Synthesis and evaluation of benzimidazole carbamates bearing indole moieties for antiproliferative and antitubulin activities

European Journal of Medicinal Chemistry
2014.0

Abstract

A series of novel benzimidazole carbamates bearing indole moieties with sulphur or selenium atoms connecting the aromatic rings were synthesised and evaluated for their antiproliferative activities against three human cancer cell lines (SGC-7901, A-549 and HT-1080) using an MTT assay. Compounds 10a, 10b, 7a, 7b and 7f showed significant activities against these cell lines. The most potent compound in this series, 10a, was selected to investigate its antitumour mechanism. In addition, molecular docking studies suggested that compound 10a interacts very closely with the nocodazole docking pose through hydrogen bonds at the colchicine binding site of tubulin.

Knowledge Graph

Similar Paper

Synthesis and evaluation of benzimidazole carbamates bearing indole moieties for antiproliferative and antitubulin activities
European Journal of Medicinal Chemistry 2014.0
Synthesis, biological evaluation, and molecular docking studies of novel 1-benzene acyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as potential tubulin polymerization inhibitors
European Journal of Medicinal Chemistry 2015.0
Discovery of Novel Benzimidazole and Indazole Analogues as Tubulin Polymerization Inhibitors with Potent Anticancer Activities
Journal of Medicinal Chemistry 2021.0
Synthesis and biological evaluation of novel indole derivatives containing sulfonamide scaffold as potential tubulin inhibitor
MedChemComm 2016.0
Synthesis and antiproliferative evaluation of novel benzoimidazole-contained oxazole-bridged analogs of combretastatin A-4
European Journal of Medicinal Chemistry 2013.0
Synthesis and biological evaluation of 7-arylindoline-1-benzenesulfonamides as a novel class of potent anticancer agents
MedChemComm 2010.0
Synthesis, antiproliferative activity, and mechanism of action of a series of 2-{[(2E)-3-phenylprop-2-enoyl]amino}benzamides
European Journal of Medicinal Chemistry 2011.0
Synthesis, biological evaluation and molecular docking of benzimidazole grafted benzsulfamide-containing pyrazole ring derivatives as novel tubulin polymerization inhibitors
Bioorganic & Medicinal Chemistry 2019.0
Synthesis and biological evaluation of 1-(4′-Indolyl and 6′-Quinolinyl) indoles as a new class of potent anticancer agents
European Journal of Medicinal Chemistry 2011.0
Synthesis, molecular modeling and biological evaluation of dithiocarbamates as novel antitubulin agents
Bioorganic & Medicinal Chemistry 2010.0