Indole-3-ethylsulfamoylphenylacrylamides: Potent histone deacetylase inhibitors with anti-inflammatory activity

European Journal of Medicinal Chemistry
2014.0

Abstract

A series of 2-methyl-1H-indol-3-ethylsulfamoylphenylacrylamides based on LBH589-PXD101 core have been synthesized and evaluated for their histone deacetylase (HDAC) inhibitory and anti-inflammatory activity. In vitro, compounds 9-12 show 2.6-fold better HDAC inhibition and 3-fold better IL-6 suppression compared to LBH589·HCl (1·HCl). Furthermore, these compounds did not show apparent cell viability suppression on macrophages while in contrast, treatment with 1·HCl resulted in significant reduction in cell viability as demonstrated by an MTT assay. Repressed expression of iNOS, COX-2 and reduced phosphorylation of p65 revealed the inhibitory effect of these analogues on inflammatory mediator release which is related to inhibited NF-ĸB signals. (N-Hydroxy-3-{3-[2-(2-methyl-1H-indol-3-yl)-ethylsulfamoyl]-phenyl}-acrylamide) (9), exhibited ability superior to that of 1·HCl, was able to reduce carrageenan-induced acute inflammation in an animal model. Compounds 9-12 have potential anti-inflammatory activity and compound 9 can serve as lead compound for further development.

Knowledge Graph

Similar Paper

Indole-3-ethylsulfamoylphenylacrylamides: Potent histone deacetylase inhibitors with anti-inflammatory activity
European Journal of Medicinal Chemistry 2014.0
Synthesis and Biological Evaluation of 1-Arylsulfonyl-5-(N-hydroxyacrylamide)indoles as Potent Histone Deacetylase Inhibitors with Antitumor Activity in Vivo
Journal of Medicinal Chemistry 2012.0
4-Indolyl- N -hydroxyphenylacrylamides as potent HDAC class I and IIB inhibitors in vitro and in vivo
European Journal of Medicinal Chemistry 2017.0
Development of N-Hydroxycinnamamide-Based Histone Deacetylase Inhibitors with an Indole-Containing Cap Group
ACS Medicinal Chemistry Letters 2013.0
N-Hydroxy-1,2-disubstituted-1H-benzimidazol-5-yl acrylamides as novel histone deacetylase inhibitors: Design, synthesis, SAR studies, and in vivo antitumor activity
Bioorganic & Medicinal Chemistry Letters 2009.0
Indole amide hydroxamic acids as potent inhibitors of histone deacetylases
Bioorganic & Medicinal Chemistry Letters 2003.0
Structure−Activity Relationship Studies of a Series of Novel δ-Lactam-Based Histone Deacetylase Inhibitors
Journal of Medicinal Chemistry 2007.0
2-Aroylindoles and 2-Aroylbenzofurans with N-Hydroxyacrylamide Substructures as a Novel Series of Rationally Designed Histone Deacetylase Inhibitors
Journal of Medicinal Chemistry 2007.0
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities
Journal of Medicinal Chemistry 2016.0
A structure–activity relationship of non-peptide macrocyclic histone deacetylase inhibitors and their anti-proliferative and anti-inflammatory activities
Bioorganic & Medicinal Chemistry 2015.0