Design and synthesis of novel anti-tuberculosis agents from the celecoxib pharmacophore

Bioorganic & Medicinal Chemistry
2015.0

Abstract

The identification of compounds with anti-mycobacterial activity within classes of molecules that have been developed for other purposes is a fruitful approach for the development of anti-tuberculosis (TB) agents. In this study we used the scaffold of celecoxib which exhibits several activities against different pathogens, for the design and focused synthesis of a library of 64 compounds. For the primary screen, we used a bioluminescence-based method by constructing a luciferase-expressing reporter M.tb strain which contains the entire bacterial Lux operon cloned in a mycobacterial integrative expression vector. Through the screening of this library, we identified 6 hit compounds with high in vitro anti-mycobacterial activity (IC₅₀ ∼0.18-0.48 μM). In particular, compounds 41, 51 and 53 were capable of inhibiting M.tb as effectively as the anti-TB drug isoniazid (INH) at 5 μM over a 72-h period, as analyzed by both bioluminescence- and colony forming unit (CFU)-based assays. All hit compounds also showed anti-M.tb activities against several multi-drug-resistant (MDR) strains. Most of the hit compounds showed no cytotoxicity for human macrophages at concentrations as high as 40 μM, setting the stage for further optimization and development of these anti-TB hit compounds both ex vivo and in vivo.

Knowledge Graph

Similar Paper

Design and synthesis of novel anti-tuberculosis agents from the celecoxib pharmacophore
Bioorganic & Medicinal Chemistry 2015.0
The synthesis, biological evaluation and structure–activity relationship of 2-phenylaminomethylene-cyclohexane-1,3-diones as specific anti-tuberculosis agents
MedChemComm 2017.0
Discovery of thienothiazolocarboxamide analogues as novel anti-tubercular agent
Bioorganic & Medicinal Chemistry 2020.0
Design, synthesis and investigation on the structure–activity relationships of N-substituted 2-aminothiazole derivatives as antitubercular agents
European Journal of Medicinal Chemistry 2014.0
Synthesis and structure-activity relationship of new chalcone linked 5-phenyl-3-isoxazolecarboxylic acid methyl esters potentially active against drug resistant Mycobacterium tuberculosis
European Journal of Medicinal Chemistry 2021.0
Design, Synthesis, and Biological Evaluation of Pyrazolo[1,5-a]pyridine-3-carboxamides as Novel Antitubercular Agents
ACS Medicinal Chemistry Letters 2015.0
QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity
European Journal of Medicinal Chemistry 2017.0
Design of hybrid molecules as antimycobacterial compounds: Synthesis of isoniazid-naphthoquinone derivatives and their activity against susceptible and resistant strains of Mycobacterium tuberculosis
Bioorganic & Medicinal Chemistry 2019.0
Rational Design of 5-Phenyl-3-isoxazolecarboxylic Acid Ethyl Esters as Growth Inhibitors of Mycobacterium tuberculosis. A Potent and Selective Series for Further Drug Development
Journal of Medicinal Chemistry 2010.0
Design and synthesis of novel quinoxaline derivatives as potential candidates for treatment of multidrug-resistant and latent tuberculosis
Bioorganic & Medicinal Chemistry Letters 2016.0