General role of the amino and methylsulfamoyl groups in selective cyclooxygenase(COX)-1 inhibition by 1,4-diaryl-1,2,3-triazoles and validation of a predictive pharmacometric PLS model

European Journal of Medicinal Chemistry
2015.0

Abstract

A novel set of 1,4-diaryl-1,2,3-triazoles were projected as a tool to study the effect of both the heteroaromatic triazole as a core ring and a variety of chemical groups with different electronic features, size and shape on the catalytic activity of the two COX isoenzymes. The new triazoles were synthesized in fair to good yields and then evaluated for their inhibitory activity towards COXs arachidonic acid conversion catalysis. Their COXs selectivity was also measured. A predictive pharmacometric Volsurf plus model, experimentally confirmed by the percentage (%) of COXs inhibition at the concentration of 50 μM and IC50 values of the tested compounds, was built by using a number of isoxazoles of known COXs inhibitory activity as a training set. It was found that two compounds {4-(5-methyl-4-phenyl-1H-1,2,3-triazol-1-yl)benzenamine (18) and 4-[1-(4-methoxyphenyl)-5-methyl-1H-1,2,3-triazole-4-yl]benzenamine (19)} bearing an amino group (NH2) are potent and selective COX-1 inhibitors (IC50 = 15 and 3 μM, respectively) and that the presence of a methylsulfamoyl group (SO2CH3) is not a rule to have a Coxib. In fact, 4-(4-methoxyphenyl)-5-methyl-1-[4-(methylsulfonyl)phenyl]-1H-1,2,3-triazole (23) has COX-1 IC50 = 23 μM and was found inactive towards COX-2.

Knowledge Graph

Similar Paper

General role of the amino and methylsulfamoyl groups in selective cyclooxygenase(COX)-1 inhibition by 1,4-diaryl-1,2,3-triazoles and validation of a predictive pharmacometric PLS model
European Journal of Medicinal Chemistry 2015.0
Synthesis and cyclooxygenase inhibition of various (aryl-1,2,3-triazole-1-yl)-methanesulfonylphenyl derivatives
Bioorganic & Medicinal Chemistry 2009.0
1,4-Diaryl-substituted triazoles as cyclooxygenase-2 inhibitors: Synthesis, biological evaluation and molecular modeling studies
Bioorganic & Medicinal Chemistry 2013.0
Design and synthesis of new 2,4,5-triarylimidazole derivatives as selective cyclooxygenase (COX-2) inhibitors
Medicinal Chemistry Research 2012.0
Novel 1-[4-(Aminosulfonyl)phenyl]-1H-1,2,4-triazole derivatives with remarkable selective COX-2 inhibition: Design, synthesis, molecular docking, anti-inflammatory and ulcerogenicity studies
European Journal of Medicinal Chemistry 2014.0
Synthesis, anti-inflammatory, cyclooxygenases inhibitions assays and histopathological study of poly-substituted 1,3,5-triazines: Confirmation of regiospecific pyrazole cyclization by HMBC
European Journal of Medicinal Chemistry 2017.0
1-(4-Methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-1,2,4-triazole-3-carboxamides: Synthesis, molecular modeling, evaluation of their anti-inflammatory activity and ulcerogenicity
European Journal of Medicinal Chemistry 2014.0
Synthesis and Biological Evaluation of 3,4-Diaryloxazolones:  A New Class of Orally Active Cyclooxygenase-2 Inhibitors
Journal of Medicinal Chemistry 2000.0
Methanesulfonamide group at position-4 of the C-5-phenyl ring of 1,5-diarylpyrazole affords a potent class of cyclooxygenase-2 (COX-2) inhibitors
Bioorganic & Medicinal Chemistry Letters 2004.0
Synthesis, Anti-Inflammatory Activity, and in Vitro Antitumor Effect of a Novel Class of Cyclooxygenase Inhibitors: 4-(Aryloyl)phenyl Methyl Sulfones
Journal of Medicinal Chemistry 2010.0