Effect of Albumin on Human Liver Microsomal and Recombinant CYP1A2 Activities: Impact on In Vitro-In Vivo Extrapolation of Drug Clearance

Drug Metabolism and Disposition
2012.0

Abstract

Long-chain unsaturated fatty acids inhibit several cytochrome P450 and UDP-glucuronosyltransferase (UGT) enzymes involved in drug metabolism, including CYP2C8, CYP2C9, UGT1A9, UGT2B4, and UGT2B7. Bovine serum albumin (BSA) enhances these cytochrome P450 and UGT activities by sequestering fatty acids that are released from membranes, especially with human liver microsomes (HLM) as the enzyme source. Here, we report the effects of BSA on CYP1A2-catalyzed phenacetin (PHEN) O-deethylation and lidocaine (LID) N-deethylation using HLM and Escherichia coli-expressed recombinant human CYP1A2 (rCYP1A2) as the enzyme sources. BSA (2% w/v) reduced (p < 0.05) the K(m) values of the high-affinity components of human liver microsomal PHEN and LID deethylation by approximately 70%, without affecting V(max). The K(m) (or S(50)) values for PHEN and LID deethylation by rCYP1A2 were reduced to a similar extent. A fatty acid mixture, comprising 3 μM concentrations each of oleic acid and linoleic acid plus 1.5 μM arachidonic acid, doubled the K(m) value for PHEN O-deethylation by rCYP1A2. Inhibition was reversed by the addition of BSA. K(i) values for the individual fatty acids ranged from 4.7 to 16.7 μM. Single-point in vitro-in vivo extrapolation (IV-IVE) based on the human liver microsomal kinetic parameters obtained in the presence, but not absence, of BSA predicted in vivo hepatic clearances of PHEN O-deethylation and LID N-deethylation that were comparable to values reported in humans, although in vivo intrinsic clearances were underpredicted. Prediction of the in vivo clearances of the CYP1A2 substrates observed here represents an improvement on other experimental systems used for IV-IVE.

Knowledge Graph

Similar Paper

Effect of Albumin on Human Liver Microsomal and Recombinant CYP1A2 Activities: Impact on In Vitro-In Vivo Extrapolation of Drug Clearance
Drug Metabolism and Disposition 2012.0
Characterization of In Vitro Glucuronidation Clearance of a Range of Drugs in Human Kidney Microsomes: Comparison with Liver and Intestinal Glucuronidation and Impact of Albumin
Drug Metabolism and Disposition 2012.0
Hydralazine As a Selective Probe Inactivator of Aldehyde Oxidase in Human Hepatocytes: Estimation of the Contribution of Aldehyde Oxidase to Metabolic Clearance
Drug Metabolism and Disposition 2012.0
Preferred Binding Orientations of Phenacetin in CYP1A1 and CYP1A2 Are Associated with Isoform-Selective Metabolism
Drug Metabolism and Disposition 2012.0
Homology modeling and molecular dynamics of CYP1A1 and CYP2B1 to explore the metabolism of aryl derivatives by docking and experimental assays
European Journal of Medicinal Chemistry 2010.0
RETRACTED: Preclinical metabolism of LB42908, a novel farnesyl transferase inhibitor, and its effects on the cytochrome P450 isozyme activities
Bioorganic &amp; Medicinal Chemistry Letters 2012.0
CYP4F Enzymes Are Responsible for the Elimination of Fingolimod (FTY720), a Novel Treatment of Relapsing Multiple Sclerosis
Drug Metabolism and Disposition 2011.0
Effects of the CYP2B6*6 Allele on Catalytic Properties and Inhibition of CYP2B6 In Vitro: Implication for the Mechanism of Reduced Efavirenz Metabolism and Other CYP2B6 Substrates In Vivo
Drug Metabolism and Disposition 2012.0
Quantitative Prediction of Human Intestinal Glucuronidation Effects on Intestinal Availability of UDP-Glucuronosyltransferase Substrates Using In Vitro Data
Drug Metabolism and Disposition 2012.0
Hepatic Pharmacokinetics of Cationic Drugs in a High-Fat Emulsion-Induced Rat Model of Nonalcoholic Steatohepatitis
Drug Metabolism and Disposition 2011.0