Effects of the CYP2B6*6 Allele on Catalytic Properties and Inhibition of CYP2B6 In Vitro: Implication for the Mechanism of Reduced Efavirenz Metabolism and Other CYP2B6 Substrates In Vivo

Drug Metabolism and Disposition
2012.0

Abstract

The mechanism by which CYP2B6*6 allele alters drug metabolism in vitro and in vivo is not fully understood. To test the hypothesis that altered substrate binding and/or catalytic properties contribute to its functional consequences, efavirenz 8-hydroxylation and bupropion 4-hydroxylation were determined in CYP2B6.1 and CYP2B6.6 proteins expressed without and with cytochrome b5 (Cyt b5) and in human liver microsomes (HLMs) obtained from liver tissues genotyped for the CYP2B6*6 allele. The susceptibility of the variant protein to inhibition was also tested in HLMs. Significantly higher V(max) and K(m) values for 8-hydroxyefavirenz formation and ∼2-fold lower intrinsic clearance (Cl(int)) were noted in expressed CYP2B6.6 protein (-b5) compared with that of CYP2B6.1 protein (-b5); this effect was abolished by Cyt b5. The V(max) and Cl(int) values for 4-hydroxybupropion formation were significantly higher in CYP2B6.6 than in CYP2B6.1 protein, with no difference in K(m), whereas coexpression with Cyt b5 reversed the genetic effect on these kinetic parameters. In HLMs, CYP2B6*6/*6 genotype was associated with markedly lower V(max) (and moderate increase in K(m)) and thus lower Cl(int) values for efavirenz and bupropion metabolism, but no difference in catalytic properties was noted between CYP2B6*1/*1 and CYP2B6*1/*6 genotypes. Inhibition of efavirenz 8-hydroxylation by voriconazole was significantly greater in HLMs with the CYP2B6*6 allele (K(i) = 1.6 ± 0.8 μM) than HLMs with CYP2B6*1/*1 genotype (K(i) = 3.0 ± 1.1 μM). In conclusion, our data suggest the CYP2B6*6 allele influences metabolic activity by altering substrate binding and catalytic activity in a substrate- and Cyt b5-dependent manner. It may also confer susceptibility to inhibition.

Knowledge Graph

Similar Paper

Effects of the CYP2B6*6 Allele on Catalytic Properties and Inhibition of CYP2B6 In Vitro: Implication for the Mechanism of Reduced Efavirenz Metabolism and Other CYP2B6 Substrates In Vivo
Drug Metabolism and Disposition 2012.0
Structure–Activity Studies Reveal the Oxazinone Ring Is a Determinant of Cytochrome P450 2B6 Activity Toward Efavirenz
ACS Medicinal Chemistry Letters 2014.0
In Vitro Activation of Cytochrome P450 46A1 (CYP46A1) by Efavirenz-Related Compounds
Journal of Medicinal Chemistry 2020.0
Influence of the Cytochrome P450 2B6 Genotype on Population Pharmacokinetics of Efavirenz in Human Immunodeficiency Virus Patients
Antimicrobial Agents and Chemotherapy 2009.0
Quantitative Prediction of CYP2B6 Induction by Estradiol During Pregnancy: Potential Explanation for Increased Methadone Clearance During Pregnancy
Drug Metabolism and Disposition 2013.0
Effect of Albumin on Human Liver Microsomal and Recombinant CYP1A2 Activities: Impact on In Vitro-In Vivo Extrapolation of Drug Clearance
Drug Metabolism and Disposition 2012.0
Expression and characterization of human cytochrome P450 4F11: Putative role in the metabolism of therapeutic drugs and eicosanoids
Toxicology and Applied Pharmacology 2004.0
Comparison of the Inhibitory Profiles of Itraconazole and Cimetidine in Cytochrome P450 3A4 Genetic Variants
Drug Metabolism and Disposition 2011.0
Evaluation of Inhibition Selectivity for Human Cytochrome P450 2A Enzymes
Drug Metabolism and Disposition 2012.0
Bioactivation of the Cancer Chemopreventive Agent Tamoxifen to Quinone Methides by Cytochrome P4502B6 and Identification of the Modified Residue on the Apoprotein
Drug Metabolism and Disposition 2012.0