Methyl 3-((6-Methoxy-1,4-dihydroindeno[1,2-c]pyrazol-3-yl)amino)benzoate (GN39482) as a Tubulin Polymerization Inhibitor Identified by MorphoBase and ChemProteoBase Profiling Methods

Journal of Medicinal Chemistry
2015.0

Abstract

A series of indenopyrazoles was synthesized from the corresponding indanones and phenyl isothiocyanates in two steps. Among the compounds synthesized, methyl 3-((6-methoxy-1,4-dihydroindeno[1,2-c]pyrazol-3-yl)amino)benzoate 6m (GN39482) was found to possess a promising antiproliferative activity toward human cancer cells without affecting any antimicrobial and antimalarial activities at 100 nM. Both a methoxy group at R(1) position and a methoxycarbonyl group at R(2) position of the anilinoquinazoline framework are essential for the high cell growth inhibition. Both MorphoBase and ChemProteoBase profiling analyses suggested that compound 6m was classified as a tubulin inhibitor. Indeed, compound 6m inhibited the acetylated tubulin accumulation and the microtubule formation and induced G2/M cell cycle arrest in HeLa cells, revealing that a promising antiproliferative activity of compound 6m toward human cancer cells is probably caused by the tubulin polymerization inhibition.

Knowledge Graph

Similar Paper

Methyl 3-((6-Methoxy-1,4-dihydroindeno[1,2-c]pyrazol-3-yl)amino)benzoate (GN39482) as a Tubulin Polymerization Inhibitor Identified by MorphoBase and ChemProteoBase Profiling Methods
Journal of Medicinal Chemistry 2015.0
Design, Synthesis, and Biological Evaluation of 1-Methyl-1,4-dihydroindeno[1,2-c]pyrazole Analogues as Potential Anticancer Agents Targeting Tubulin Colchicine Binding Site
Journal of Medicinal Chemistry 2016.0
Synthesis and bioactive evaluation of N-((1-methyl-1H-indol-3-yl)methyl)-N-(3,4,5-trimethoxyphenyl)acetamide derivatives as agents for inhibiting tubulin polymerization
RSC Medicinal Chemistry 2022.0
SAR Investigation and Discovery of Water-Soluble 1-Methyl-1,4-dihydroindeno[1,2-c]pyrazoles as Potent Tubulin Polymerization Inhibitors
Journal of Medicinal Chemistry 2020.0
N-Benzoylated Phenoxazines and Phenothiazines: Synthesis, Antiproliferative Activity, and Inhibition of Tubulin Polymerization
Journal of Medicinal Chemistry 2011.0
Synthesis and biological evaluation of (1-aryl-1H-pyrazol-4-yl) (3,4,5-trimethoxyphenyl)methanone derivatives as tubulin inhibitors
European Journal of Medicinal Chemistry 2018.0
Design, synthesis and biological evaluation of a series of pyrano chalcone derivatives containing indole moiety as novel anti-tubulin agents
Bioorganic & Medicinal Chemistry 2014.0
Indolobenzazepin-7-ones and 6-, 8-, and 9-Membered Ring Derivatives as Tubulin Polymerization Inhibitors: Synthesis and Structure−Activity Relationship Studies
Journal of Medicinal Chemistry 2009.0
N-Heterocyclic (4-Phenylpiperazin-1-yl)methanones Derived from Phenoxazine and Phenothiazine as Highly Potent Inhibitors of Tubulin Polymerization
Journal of Medicinal Chemistry 2017.0
New (3-(1H-benzo[d]imidazol-2-yl))/(3-(3H-imidazo[4,5-b]pyridin-2-yl))-(1H-indol-5-yl)(3,4,5-trimethoxyphenyl)methanone conjugates as tubulin polymerization inhibitors
MedChemComm 2017.0