Design, Synthesis, and Biological Evaluation of 1-Methyl-1,4-dihydroindeno[1,2-c]pyrazole Analogues as Potential Anticancer Agents Targeting Tubulin Colchicine Binding Site

Journal of Medicinal Chemistry
2016.0

Abstract

By targeting a new binding region at the interface between αβ-tubulin heterodimers at the colchicine binding site, we designed a series of 7-substituted 1-methyl-1,4-dihydroindeno[1,2-c]pyrazoles as potential tubulin polymerization inhibitors. Among the compounds synthesized, 2-(6-ethoxy-3-(3-ethoxyphenylamino)-1-methyl-1,4-dihydroindeno[1,2-c]pyrazol-7-yloxy)acetamide 6a and 2-(6-ethoxy-3-(3-ethoxyphenylamino)-1-methyl-1,4-dihydroindeno[1,2-c]pyrazol-7-yloxy)-N-hydroxyacetamide 6n showed noteworthy low nanomolar potency against HepG2, Hela, PC3, and MCF-7 cancer cell lines. In mechanism studies, 6a inhibited tubulin polymerization and disorganized microtubule in A549 cells by binding to tubulin colchicine binding site. 6a arrested A549 cells in G2/M phase that was related to the alterations in the expression of cyclin B1 and p-cdc2. 6a induced A549 cells apoptosis through the activation of caspase-3 and PARP. In addition, 6a inhibited capillary tube formation in a concentration-dependent manner. In nonsmall cell lung cancer xenografts mouse model, 6a suppressed tumor growth by 59.1% at a dose of 50 mg/kg (ip) without obvious toxicity, indicating its in vivo potential as anticancer agent.

Knowledge Graph

Similar Paper

Design, Synthesis, and Biological Evaluation of 1-Methyl-1,4-dihydroindeno[1,2-c]pyrazole Analogues as Potential Anticancer Agents Targeting Tubulin Colchicine Binding Site
Journal of Medicinal Chemistry 2016.0
Design, synthesis, and bioevaluation of pyrazolo[1,5-a]pyrimidine derivatives as tubulin polymerization inhibitors targeting the colchicine binding site with potent anticancer activities
European Journal of Medicinal Chemistry 2020.0
Design, synthesis and bioevaluation of 6-aryl-1-(3,4,5-trimethoxyphenyl)-1H-benzo[d]imidazoles as tubulin polymerization inhibitors
European Journal of Medicinal Chemistry 2021.0
Chemical synthesis, pharmacological evaluation and in silico analysis of new 2,3,3a,4,5,6-hexahydrocyclopenta[c]pyrazole derivatives as potential anti-mitotic agents
Bioorganic & Medicinal Chemistry Letters 2016.0
Design, synthesis andin vitrocytotoxicity evaluation of indolo–pyrazoles grafted with thiazolidinone as tubulin polymerization inhibitors
RSC Medicinal Chemistry 2023.0
Synthesis and biological evaluation of (1-aryl-1H-pyrazol-4-yl) (3,4,5-trimethoxyphenyl)methanone derivatives as tubulin inhibitors
European Journal of Medicinal Chemistry 2018.0
Synthesis and bioactive evaluation of N-((1-methyl-1H-indol-3-yl)methyl)-N-(3,4,5-trimethoxyphenyl)acetamide derivatives as agents for inhibiting tubulin polymerization
RSC Medicinal Chemistry 2022.0
The discovery of novel indazole derivatives as tubulin colchicine site binding agents that displayed potent antitumor activity both in vitro and in vivo
European Journal of Medicinal Chemistry 2020.0
Synthesis and mechanism of action of novel pyrimidinyl pyrazole derivatives possessing antiproliferative activity
Bioorganic & Medicinal Chemistry Letters 2002.0
Design, synthesis, and bioevaluation of imidazo [1,2–a] pyrazine derivatives as tubulin polymerization inhibitors with potent anticancer activities
Bioorganic & Medicinal Chemistry 2022.0