Novel PotentN-Methyl-d-aspartate (NMDA) Receptor Antagonists or σ1Receptor Ligands Based on Properly Substituted 1,4-Dioxane Ring

Journal of Medicinal Chemistry
2015.0

Abstract

Two series of 1,4-dioxanes (4-11 and 12-19) were rationally designed and prepared to interact either with the phencyclidine (PCP) binding site of the N-methyl-d-aspartate (NMDA) receptor or with σ1 receptors, respectively. The biological profiles of the novel compounds were assessed using radioligand binding assays, and the compounds with the highest affinities were investigated for their functional activity. The results were in line with the available pharmacophore models and highlighted that the 1,4-dioxane scaffold is compatible with potent antagonist activity at NMDA receptor or high affinity for σ1 receptors. The primary amines 6b and 7 bearing a cyclohexyl and a phenyl ring or two phenyl rings in position 6, respectively, were the most potent noncompetitive antagonists at the NMDA receptor with IC50 values similar to those of the dissociative anesthetic (S)-(+)-ketamine. The 5,5-diphenyl substitution associated with a benzylaminomethyl moiety in position 2, as in 18, favored the interaction with σ1 receptors.

Knowledge Graph

Similar Paper

Novel PotentN-Methyl-<scp>d</scp>-aspartate (NMDA) Receptor Antagonists or σ<sub>1</sub>Receptor Ligands Based on Properly Substituted 1,4-Dioxane Ring
Journal of Medicinal Chemistry 2015.0
Enantiomerically Pure 1,3-Dioxanes as Highly Selective NMDA and σ<sub>1</sub>Receptor Ligands
Journal of Medicinal Chemistry 2012.0
Structure−Activity Relationships in 1,4-Benzodioxan-Related Compounds. 9. From 1,4-Benzodioxane to 1,4-Dioxane Ring as a Promising Template of Novel α<sub>1D</sub>-Adrenoreceptor Antagonists, 5-HT<sub>1A</sub>Full Agonists, and Cytotoxic Agents
Journal of Medicinal Chemistry 2008.0
Synthesis of conformationally restricted 1,3-dioxanes to analyze the bioactive conformation of 1,3-dioxane-based σ 1 and PCP receptor antagonists
Bioorganic &amp; Medicinal Chemistry 2017.0
Synthesis of 4-(aminoalkyl) substituted 1,3-dioxanes as potent NMDA and σ receptor antagonists
European Journal of Medicinal Chemistry 2011.0
Synthesis and NMDA receptor affinity of dexoxadrol analogues with modifications in position 4 of the piperidine ring
MedChemComm 2010.0
Novel σ1 antagonists designed for tumor therapy: Structure – activity relationships of aminoethyl substituted cyclohexanes
European Journal of Medicinal Chemistry 2021.0
(+)-cis-N-Ethyleneamino-N-normetazocine Derivatives. Novel and Selective σ Ligands with Antagonist Properties
Journal of Medicinal Chemistry 1998.0
Combination of Two Pharmacophoric Systems: Synthesis and Pharmacological Evaluation of Spirocyclic Pyranopyrazoles with High σ<sub>1</sub>Receptor Affinity
Journal of Medicinal Chemistry 2011.0
Chemoenzymatic synthesis of 2,6-disubstituted tetrahydropyrans with high σ1 receptor affinity, antitumor and analgesic activity
European Journal of Medicinal Chemistry 2021.0