Synthesis, in vitro and in vivo pharmacological evaluation of serotoninergic ligands containing an isonicotinic nucleus

European Journal of Medicinal Chemistry
2016.0

Abstract

Isonicotinamide derivatives, linked to an arylpiperazine moiety, were prepared and their affinity to 5-HT1A, 5-HT2A and 5-HT2C receptors were evaluated. The combination of structural elements (heterocyclic nucleus, alkyl chain and 4-substituted piperazine) known to play critical roles in affinity for serotoninergic receptors and the proper selection of substituents led to compounds with high specificity and affinity towards serotoninergic receptors. In binding studies, several molecules showed high affinity in nanomolar and subnanomolar range at 5-HT1A, 5-HT2A and 5-HT2C receptors and moderate or no affinity for other relevant receptors (D1, D2, α1 and α2). N-(3-(4-(bis(4-fluorophenyl)methyl)piperazin-1-yl)propyl)isonicotinamide (4s) with Ki = 0.130 nM, was the most active and selective derivative for the 5-HT1A receptor compared to other serotoninergic, dopaminergic and adrenergic receptors. Compound 4o, instead, showed 5-HT2A affinity values in subnamolar range. Moreover, the compounds having better affinity and selectivity binding profile towards 5-HT1A and 5-HT2A receptors were selected in order to be tested by in vitro and in vivo assays to determine their functional activity.

Knowledge Graph

Similar Paper

Synthesis, in vitro and in vivo pharmacological evaluation of serotoninergic ligands containing an isonicotinic nucleus
European Journal of Medicinal Chemistry 2016.0
New 5-HT1A, 5HT2A and 5HT2C receptor ligands containing a picolinic nucleus: Synthesis, in vitro and in vivo pharmacological evaluation
Bioorganic & Medicinal Chemistry 2017.0
7-Arylpiperazinylalkyl and 7-tetrahydroisoquinolinylalkyl derivatives of 8-alkoxy-purine-2,6-dione and some of their purine-2,6,8-trione analogs as 5-HT1A, 5-HT2A, and 5-HT7 serotonin receptor ligands
Bioorganic & Medicinal Chemistry 2007.0
Design and synthesis of new homo and hetero bis-piperazinyl-1-propanone derivatives as 5-HT7R selective ligands over 5-HT1AR
Bioorganic & Medicinal Chemistry Letters 2016.0
Synthesis of New Arylpiperazinylalkylthiobenzimidazole, Benzothiazole, or Benzoxazole Derivatives as Potent and Selective 5-HT<sub>1A</sub> Serotonin Receptor Ligands
Journal of Medicinal Chemistry 2008.0
Synthesis and binding properties of new long-chain 4-substituted piperazine derivatives as 5-HT1A and 5-HT7 receptor ligands
Bioorganic &amp; Medicinal Chemistry Letters 2015.0
Novel class of arylpiperazines containing N-acylated amino acids: Their synthesis, 5-HT1A, 5-HT2A receptor affinity, and in vivo pharmacological evaluation
Bioorganic &amp; Medicinal Chemistry 2007.0
New (2-Methoxyphenyl)piperazine Derivatives as 5-HT1A Receptor Ligands with Reduced .alpha.1-Adrenergic Activity. Synthesis and Structure-Affinity Relationships
Journal of Medicinal Chemistry 1995.0
SAR-studies on the importance of aromatic ring topologies in search for selective 5-HT7 receptor ligands among phenylpiperazine hydantoin derivatives
European Journal of Medicinal Chemistry 2014.0
5-HT1A and 5-HT2A receptors affinity, docking studies and pharmacological evaluation of a series of 8-acetyl-7-hydroxy-4-methylcoumarin derivatives
Bioorganic &amp; Medicinal Chemistry 2018.0