New 5-HT1A, 5HT2A and 5HT2C receptor ligands containing a picolinic nucleus: Synthesis, in vitro and in vivo pharmacological evaluation

Bioorganic & Medicinal Chemistry
2017.0

Abstract

Picolinamide derivatives, linked to an arylpiperazine moiety, were prepared and their affinity to 5-HT1A, 5-HT2A and 5-HT2C receptors was evaluated. The combination of structural elements (heterocyclic nucleus, alkyl chain and 4-substituted piperazine), known to play critical roles in affinity for serotoninergic receptors, and the proper selection of substituents led to compounds with high specificity and affinity towards serotoninergic receptors. In binding studies, several molecules showed high affinity in nanomolar and subnanomolar range at 5-HT1A, 5-HT2A and 5-HT2C receptors and moderate or no affinity for other relevant receptors (D1, D2, α1 and α2). N-(2-(4-(pyrimidin-2-yl)piperazin-1-yl)ethyl)picolinamide (3o) with Ki=0.046nM, was the most affine and selective derivative for the 5-HT1A receptor compared to other serotoninergic dopaminergic and adrenergic receptors. N-(2-(4-(2-methoxyphenyl)piperazin-1-yl)ethyl)picolinamide (3b), instead, showed a subnanomolar affinity towards 5-HT2A with Ki=0.0224nM, whereas N-(2-(4-(bis(4-fluorophenyl)methyl)piperazin-1-yl)ethyl)picolinamide (3s) presented an attractive 5-HT2C affinity with Ki=0.8nM. Moreover, the compounds having better affinity and selectivity binding profiles towards 5-HT2A were selected and tested on rat ileum, to determine their effect on 5HT induced contractions. Those more selective towards 5-HT1A receptors were studied in vivo on several behavioral tests.

Knowledge Graph

Similar Paper

New 5-HT1A, 5HT2A and 5HT2C receptor ligands containing a picolinic nucleus: Synthesis, in vitro and in vivo pharmacological evaluation
Bioorganic & Medicinal Chemistry 2017.0
Synthesis, in vitro and in vivo pharmacological evaluation of serotoninergic ligands containing an isonicotinic nucleus
European Journal of Medicinal Chemistry 2016.0
Novel class of arylpiperazines containing N-acylated amino acids: Their synthesis, 5-HT1A, 5-HT2A receptor affinity, and in vivo pharmacological evaluation
Bioorganic & Medicinal Chemistry 2007.0
5-HT1A and 5-HT2A receptors affinity, docking studies and pharmacological evaluation of a series of 8-acetyl-7-hydroxy-4-methylcoumarin derivatives
Bioorganic & Medicinal Chemistry 2018.0
7-Arylpiperazinylalkyl and 7-tetrahydroisoquinolinylalkyl derivatives of 8-alkoxy-purine-2,6-dione and some of their purine-2,6,8-trione analogs as 5-HT1A, 5-HT2A, and 5-HT7 serotonin receptor ligands
Bioorganic & Medicinal Chemistry 2007.0
New (2-Methoxyphenyl)piperazine Derivatives as 5-HT1A Receptor Ligands with Reduced .alpha.1-Adrenergic Activity. Synthesis and Structure-Affinity Relationships
Journal of Medicinal Chemistry 1995.0
Synthesis and binding properties of new long-chain 4-substituted piperazine derivatives as 5-HT1A and 5-HT7 receptor ligands
Bioorganic & Medicinal Chemistry Letters 2015.0
Design and synthesis of new homo and hetero bis-piperazinyl-1-propanone derivatives as 5-HT7R selective ligands over 5-HT1AR
Bioorganic & Medicinal Chemistry Letters 2016.0
Development of selective agents targeting serotonin 5HT<sub>1A</sub> receptors with subnanomolar activities based on a coumarin core
MedChemComm 2017.0
Synthesis of New Arylpiperazinylalkylthiobenzimidazole, Benzothiazole, or Benzoxazole Derivatives as Potent and Selective 5-HT<sub>1A</sub> Serotonin Receptor Ligands
Journal of Medicinal Chemistry 2008.0