Novel and High Affinity 2-[(Diphenylmethyl)sulfinyl]acetamide (Modafinil) Analogues as Atypical Dopamine Transporter Inhibitors

Journal of Medicinal Chemistry
2016.0

Abstract

The development of pharmacotherapeutic treatments of psychostimulant abuse has remained a challenge, despite significant efforts made toward relevant mechanistic targets, such as the dopamine transporter (DAT). The atypical DAT inhibitors have received attention due to their promising pharmacological profiles in animal models of cocaine and methamphetamine abuse. Herein, we report a series of modafinil analogues that have an atypical DAT inhibitor profile. We extended SAR by chemically manipulating the oxidation states of the sulfoxide and the amide functional groups, halogenating the phenyl rings, and/or functionalizing the terminal nitrogen with substituted piperazines, resulting in several novel leads such as 11b, which demonstrated high DAT affinity (Ki = 2.5 nM) and selectivity without producing concomitant locomotor stimulation in mice, as compared to cocaine. These results are consistent with an atypical DAT inhibitor profile and suggest that 11b may be a potential lead for development as a psychostimulant abuse medication.

Knowledge Graph

Similar Paper

Novel and High Affinity 2-[(Diphenylmethyl)sulfinyl]acetamide (Modafinil) Analogues as Atypical Dopamine Transporter Inhibitors
Journal of Medicinal Chemistry 2016.0
Heterocyclic Analogues of Modafinil as Novel, Atypical Dopamine Transporter Inhibitors
Journal of Medicinal Chemistry 2017.0
Structure–Activity Relationships for a Series of (Bis(4-fluorophenyl)methyl)sulfinyl Alkyl Alicyclic Amines at the Dopamine Transporter: Functionalizing the Terminal Nitrogen Affects Affinity, Selectivity, and Metabolic Stability
Journal of Medicinal Chemistry 2020.0
Structure–Activity Relationships of Novel Thiazole-Based Modafinil Analogues Acting at Monoamine Transporters
Journal of Medicinal Chemistry 2020.0
SARs at the Monoamine Transporters for a Novel Series of Modafinil Analogues
ACS Medicinal Chemistry Letters 2011.0
Structure-activity relationships for a series of (Bis(4-fluorophenyl)methyl)sulfinylethyl-aminopiperidines and -piperidine amines at the dopamine transporter: Bioisosteric replacement of the piperazine improves metabolic stability
European Journal of Medicinal Chemistry 2020.0
Discovery of a Novel Dopamine Transporter Inhibitor, 4-Hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-Methylphenyl Ketone, as a Potential Cocaine Antagonist through 3D-Database Pharmacophore Searching. Molecular Modeling, Structure−Activity Relationships, and Behavioral Pharmacological Studies
Journal of Medicinal Chemistry 2000.0
Mazindol Analogues as Potential Inhibitors of the Cocaine Binding Site at the Dopamine Transporter
Journal of Medicinal Chemistry 2002.0
Synthesis and Evaluation of Dopamine and Serotonin Transporter Inhibition by Oxacyclic and Carbacyclic Analogues of Methylphenidate
Journal of Medicinal Chemistry 2003.0
Structure−Activity Relationship Studies on a Novel Series of (S)-2β-Substituted 3α-[Bis(4-fluoro- or 4-chlorophenyl)methoxy]tropane Analogues for in Vivo Investigation
Journal of Medicinal Chemistry 2006.0