Structure–Activity Relationships for a Series of (Bis(4-fluorophenyl)methyl)sulfinyl Alkyl Alicyclic Amines at the Dopamine Transporter: Functionalizing the Terminal Nitrogen Affects Affinity, Selectivity, and Metabolic Stability

Journal of Medicinal Chemistry
2020.0

Abstract

Atypical dopamine transporter (DAT) inhibitors have shown therapeutic potential in preclinical models of psychostimulant abuse. In rats, 1-(4-(2-((bis(4-fluorophenyl)methyl)sulfinyl)ethyl)-piperazin-1-yl)-propan-2-ol (3b) was effective in reducing the reinforcing effects of both cocaine and methamphetamine but did not exhibit psychostimulant behaviors itself. While further development of 3b is ongoing, diastereomeric separation, as well as improvements in potency and pharmacokinetics were desirable for discovering pipeline drug candidates. Thus, a series of bis(4-fluorophenyl)methyl)sulfinyl)alkyl alicyclic amines, where the piperazine-2-propanol scaffold was modified, were designed, synthesized, and evaluated for binding affinities at DAT, as well as the serotonin transporter and σ1 receptors. Within the series, 14a showed improved DAT affinity (Ki = 23 nM) over 3b (Ki = 230 nM), moderate metabolic stability in human liver microsomes, and a hERG/DAT affinity ratio = 28. While 14a increased locomotor activity relative to vehicle, it was significantly lower than activity produced by cocaine. These results support further investigation of 14a as a potential treatment for psychostimulant use disorders.

Knowledge Graph

Similar Paper

Structure–Activity Relationships for a Series of (Bis(4-fluorophenyl)methyl)sulfinyl Alkyl Alicyclic Amines at the Dopamine Transporter: Functionalizing the Terminal Nitrogen Affects Affinity, Selectivity, and Metabolic Stability
Journal of Medicinal Chemistry 2020.0
Structure-activity relationships for a series of (Bis(4-fluorophenyl)methyl)sulfinylethyl-aminopiperidines and -piperidine amines at the dopamine transporter: Bioisosteric replacement of the piperazine improves metabolic stability
European Journal of Medicinal Chemistry 2020.0
Novel and High Affinity 2-[(Diphenylmethyl)sulfinyl]acetamide (Modafinil) Analogues as Atypical Dopamine Transporter Inhibitors
Journal of Medicinal Chemistry 2016.0
Further SAR Studies of Piperidine-Based Analogues of Cocaine. 2. Potent Dopamine and Serotonin Reuptake Inhibitors
Journal of Medicinal Chemistry 2000.0
Structure−Activity Relationship Comparison of (S)-2β-Substituted 3α-(Bis[4-fluorophenyl]methoxy)tropanes and (R)-2β-Substituted 3β-(3,4-Dichlorophenyl)tropanes at the Dopamine Transporter
Journal of Medicinal Chemistry 2003.0
[3-cis-3,5-Dimethyl-(1-piperazinyl)alkyl]-bis-(4′-fluorophenyl)amine analogues as novel probes for the dopamine transporter
Bioorganic & Medicinal Chemistry Letters 2001.0
Synthesis and structure–activity relationship of 3β-(4-alkylthio, -methylsulfinyl, and -methylsulfonylphenyl)tropane and 3β-(4-alkylthiophenyl)nortropane derivatives for monoamine transporters
Bioorganic & Medicinal Chemistry 2009.0
Design and Synthesis of 2- and 3-Substituted-3-phenylpropyl Analogs of 1-[2-[Bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine and 1-[2-(Diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine: Role of Amino, Fluoro, Hydroxyl, Methoxyl, Methyl, Methylene, and Oxo Substituents on Affinity for the Dopamine and Serotonin Transporters
Journal of Medicinal Chemistry 2008.0
Structure−Activity Relationship Studies of 4-[2-(Diphenylmethoxy)ethyl]-1-benzylpiperidine Derivatives and Their N-Analogues:  Evaluation of Behavioral Activity of O- and N-Analogues and Their Binding to Monoamine Transporters
Journal of Medicinal Chemistry 2001.0
Discovery of a Novel Dopamine Transporter Inhibitor, 4-Hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-Methylphenyl Ketone, as a Potential Cocaine Antagonist through 3D-Database Pharmacophore Searching. Molecular Modeling, Structure−Activity Relationships, and Behavioral Pharmacological Studies
Journal of Medicinal Chemistry 2000.0