Design, synthesis and biological evaluation of novel azaspiro analogs of linezolid as antibacterial and antitubercular agents

European Journal of Medicinal Chemistry
2016.0

Abstract

The design, synthesis and antimicrobial evaluation of a novel series of azaspiro analogues of linezolid (1) have been described. Linezolid comprises of a morpholine ring which is known for its metabolism-related liabilities. Therefore, the key modification made in the linezolid structure was the replacement of morpholine moiety with its bioisostere, 2-oxa-6-azaspiro[3.3]heptane. Furthermore, the replacement of N-acetyl terminal of 1 with various aromatic or aliphatic functionalities was carried out. The title compounds were evaluated against a panel of Gram-positive and Gram-negative bacteria and Mycobacterium tuberculosis. Subsequent structure-activity relationship (SAR) studies identified several compounds with mixed antibacterial and antitubercular profiles. Compound 22 (IC50 0.72, 0.51, 0.88, 0.49 μg/mL for Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, respectively) exhibited similar antibacterial profile as 1. The N-acetyl derivative 18 was similar to 1 in antitubercular profile. Thus, the present study successfully demonstrated the use of azaspiro substructure in the medicinal chemistry of antibacterial and antitubercular agents.

Knowledge Graph

Similar Paper

Design, synthesis and biological evaluation of novel azaspiro analogs of linezolid as antibacterial and antitubercular agents
European Journal of Medicinal Chemistry 2016.0
Conformational Constraint in Oxazolidinone Antibacterials. Synthesis and Structure−Activity Studies of (Azabicyclo[3.1.0]hexylphenyl)oxazolidinones
Journal of Medicinal Chemistry 2005.0
Synthesis and antibacterial activity of dihydro-1,2-oxazine and 2-pyrazoline oxazolidinones: novel analogs of linezolid
Bioorganic & Medicinal Chemistry Letters 2005.0
The synthesis and antibacterial activity of 1,3,4-Thiadiazole phenyl oxazolidinone analogues
Bioorganic & Medicinal Chemistry Letters 2003.0
Design, Synthesis, and Biological Evaluations of Novel 7-[7-Amino-7-methyl-5-azaspiro[2.4]heptan-5-yl]-8-methoxyquinolines with Potent Antibacterial Activity against Respiratory Pathogens
Journal of Medicinal Chemistry 2013.0
Synthesis and evaluation of 4′,5′-dihydrospiro[piperidine-4,7′-thieno[2,3-c]pyran] analogues against both active and dormant Mycobacterium tuberculosis
Bioorganic & Medicinal Chemistry 2018.0
A highly atom economic, chemo-, regio- and stereoselective synthesis and evaluation of spiro-pyrrolothiazoles as antitubercular agents
Bioorganic & Medicinal Chemistry Letters 2010.0
Design, synthesis and in vitro antibacterial and antifungal activities of some novel spiro[azetidine-2,3′-indole]-2,4(1′H)-dione
Medicinal Chemistry Research 2011.0
Quinoline-based azetidinone and thiazolidinone analogues as antimicrobial and antituberculosis agents
Medicinal Chemistry Research 2013.0
Synthesis of Conformationally Constrained Analogues of Linezolid:  Structure−Activity Relationship (SAR) Studies on Selected Novel Tricyclic Oxazolidinones
Journal of Medicinal Chemistry 2002.0