Design, synthesis, antibacterial activity and docking study of some new trimethoprim derivatives

Bioorganic & Medicinal Chemistry Letters
2016.0

Abstract

In present study, nineteen novel trimethoprim (TMP) derivatives were designed, synthesized and evaluated for their antibacterial potential. Hydroxy trimethoprim 2 (HTMP) was synthesized by following the demethylation of 4-methoxy group at trimethoxy benzyl ring of TMP. Structure-activity relationship (SAR) studies were explored on HTMP by incorporating various substituents leading to the identification of some new compounds with improved antibacterial activities. The results revealed that the introduction of benzyloxy (4a-e) and phenyl ethanone (5a-e) group at 4-position of dimethoxy benzyl ring leads to overall increase in the antibacterial activity. The most potent antibacterial compound discovered is benzyloxy derivative 4b with MIC value of 5.0μM against Staphylococcus aureus and 4.0μM against Escherichia coli strains higher than the standard TMP (22.7μM against S. aureus and 55.1μM against E. coli). Substitution at 4-NH2 group was not tolerated and the resulting Schiff base derivatives 3a-h demonstrated very little or no antibacterial activity in the tested concentration domain. We further performed exploratory docking studies on dihydrofolate reductase (DHFR) to rationalize the in vitro biological data and to demonstrate the mechanism of antibacterial activity. For the ability to cross lipophilic outer membrane, logP was computed. It was found that the compounds possessing high hydrophobicity have high activity against E. coli.

Knowledge Graph

Similar Paper

Design, synthesis, antibacterial activity and docking study of some new trimethoprim derivatives
Bioorganic & Medicinal Chemistry Letters 2016.0
2,4-Diamino-5-benzylpyrimidines and analogs as antibacterial agents. 5. 3',5'-Dimethoxy-4'-substituted-benzyl analogs of trimethoprim
Journal of Medicinal Chemistry 1981.0
Structure-based design of new DHFR-based antibacterial agents: 7-aryl-2,4-diaminoquinazolines
Bioorganic & Medicinal Chemistry Letters 2011.0
Halogenated trimethoprim derivatives as multidrug-resistant Staphylococcus aureus therapeutics
Bioorganic & Medicinal Chemistry 2018.0
2,4-Diamino-5-benzylpyrimidines as antibacterial agents. 8. The 3,4,5-triethyl isostere of trimethoprim. A study of specificity
Journal of Medicinal Chemistry 1987.0
Analysis of complexes of inhibitors with Cryptosporidium hominis DHFR leads to a new trimethoprim derivative
Bioorganic & Medicinal Chemistry Letters 2006.0
Receptor-based design of dihydrofolate reductase inhibitors: comparison of crystallographically determined enzyme binding with enzyme affinity in a series of carboxy-substituted trimethoprim analogs
Journal of Medicinal Chemistry 1982.0
2,4-Diamino-5-benzylpyrimidines as antibacterial agents. 4. 6-Substituted trimethoprim derivatives from phenolic Mannich intermediates. Application to the synthesis of trimethoprim and 3,5-dialkylbenzyl analogs
Journal of Medicinal Chemistry 1980.0
2,4-Diamino-5-benzylpyrimidines and analogs as antibacterial agents. 10. 2,4-Diamino-5-(6-quinolylmethyl)- and -[(tetrahydro-6-quinolyl)methyl]pyrimidine derivatives. Further specificity studies
Journal of Medicinal Chemistry 1989.0
2,4-Diamino-5-benzylpyrimidines as antibacterial agents. 14. 2,3-Dihydro-1-(2,4-diamino-5-pyrimidyl)-1H-indenes as conformationally restricted analogs of trimethoprim
Journal of Medicinal Chemistry 1991.0