Analysis of complexes of inhibitors with Cryptosporidium hominis DHFR leads to a new trimethoprim derivative

Bioorganic & Medicinal Chemistry Letters
2006.0

Abstract

Cryptosporidiosis, an opportunistic infection affecting immunocompromised patients, the elderly, and children, is still an untreatable disease since the causative agent, Cryptosporidium hominis, is essentially resistant to all clinically used antimicrobial agents. In order to accelerate the design of new potent and selective inhibitors targeting dihydrofolate reductase of C. hominis (ChDHFR), we determined the structural basis for the potency of existing DHFR inhibitors using superpositions of the structure of ChDHFR with other species and analysis of active site complexes of ChDHFR bound to ligands exhibiting a wide range of IC(50) values. This information was used to develop an accurate docking model capable of identifying potent inhibitors in silico. A series of C7-trimethoprim derivatives, designed to exploit a unique pocket in ChDHFR, was synthesized and evaluated; 7-ethyl TMP has four times higher activity than TMP against ChDHFR.

Knowledge Graph

Similar Paper

Analysis of complexes of inhibitors with Cryptosporidium hominis DHFR leads to a new trimethoprim derivative
Bioorganic & Medicinal Chemistry Letters 2006.0
Highly Efficient Ligands for Dihydrofolate Reductase from Cryptosporidium hominis and Toxoplasma gondii Inspired by Structural Analysis
Journal of Medicinal Chemistry 2007.0
Targeting species specific amino acid residues: Design, synthesis and biological evaluation of 6-substituted pyrrolo[2,3-d]pyrimidines as dihydrofolate reductase inhibitors and potential anti-opportunistic infection agents
Bioorganic & Medicinal Chemistry 2018.0
2,4-Diamino-6,7-dihydro-5H-cyclopenta[d]pyrimidine Analogues of Trimethoprim as Inhibitors of Pneumocystis carinii and Toxoplasma gondii Dihydrofolate Reductase
Journal of Medicinal Chemistry 1998.0
Receptor-based design of dihydrofolate reductase inhibitors: comparison of crystallographically determined enzyme binding with enzyme affinity in a series of carboxy-substituted trimethoprim analogs
Journal of Medicinal Chemistry 1985.0
Development of substituted pyrido[3,2-d]pyrimidines as potent and selective dihydrofolate reductase inhibitors for pneumocystis pneumonia infection
Bioorganic & Medicinal Chemistry Letters 2019.0
Structure-based design of new DHFR-based antibacterial agents: 7-aryl-2,4-diaminoquinazolines
Bioorganic & Medicinal Chemistry Letters 2011.0
Receptor-based design of dihydrofolate reductase inhibitors: comparison of crystallographically determined enzyme binding with enzyme affinity in a series of carboxy-substituted trimethoprim analogs
Journal of Medicinal Chemistry 1982.0
Design, synthesis, antibacterial activity and docking study of some new trimethoprim derivatives
Bioorganic & Medicinal Chemistry Letters 2016.0
In Vitro Efficacy of New Antifolates against Trimethoprim-Resistant Bacillus anthracis
Antimicrobial Agents and Chemotherapy 2007.0