Novel 2-aryl-4-(4′-hydroxyphenyl)-5H-indeno[1,2-b]pyridines as potent DNA non-intercalative topoisomerase catalytic inhibitors

European Journal of Medicinal Chemistry
2017.0

Abstract

On the basis of previous reports on the importance of thienyl, furyl or phenol group substitution on 5H-indeno[1,2-b]pyridine skeleton, a new series of rigid 2-aryl-4-(4'-hydroxyphenyl)-5H-indeno[1,2-b]pyridine derivatives were systematically designed and synthesized. Topoisomerase inhibitory activity and antiproliferative activity of all the synthesized compounds were determined using human colorectal (HCT15), breast (T47D), prostate (DU145) and cervix (HeLa) cancer cells. Compounds 9, 10, 12, 13, 15, 16, 18 and 19 with thienyl or furyl moiety at the 2-position and hydroxyl group at the meta or para positions of 4-phenyl ring displayed strong to moderate topoisomerase IIα (topo IIα) inhibitory activity and significant antiproliferative activity. The evaluation of compound 16 to determine its mechanism of action was performed with topo IIα-DNA cleavable complex, topo IIα-mediated ATPase assay, DNA unwinding and in vitro and ex vivo topo IIα relaxation assay. Compound 16 functioned as a DNA non-intercalative topo IIα catalytic inhibitor with better potency than etoposide in T47D breast cancer cells. Molecular docking study revealed that compound 16 cannot intercalate into regularly stacked base-pairs of DNA duplex but can interact or intercalate to topo IIα-bound DNA.

Knowledge Graph

Similar Paper

Novel 2-aryl-4-(4′-hydroxyphenyl)-5H-indeno[1,2-b]pyridines as potent DNA non-intercalative topoisomerase catalytic inhibitors
European Journal of Medicinal Chemistry 2017.0
Design and synthesis of novel 2,4-diaryl-5H-indeno[1,2-b]pyridine derivatives, and their evaluation of topoisomerase inhibitory activity and cytotoxicity
Bioorganic & Medicinal Chemistry 2015.0
Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study of 2-phenyl- or hydroxylated 2-phenyl-4-aryl-5H-indeno[1,2-b]pyridines
Bioorganic & Medicinal Chemistry 2015.0
A new phenolic series of indenopyridinone as topoisomerase inhibitors: Design, synthesis, and structure-activity relationships
Bioorganic & Medicinal Chemistry 2018.0
Dihydroxylated 2,6-diphenyl-4-chlorophenylpyridines: Topoisomerase I and IIα dual inhibitors with DNA non-intercalative catalytic activity
European Journal of Medicinal Chemistry 2017.0
Rational design, synthesis, and evaluation of novel 2,4-Chloro- and Hydroxy-Substituted diphenyl Benzofuro[3,2-b]Pyridines: Non-intercalative catalytic topoisomerase I and II dual inhibitor
European Journal of Medicinal Chemistry 2017.0
Synthesis and SAR study of new hydroxy and chloro-substituted 2,4-diphenyl 5H-chromeno[4,3-b]pyridines as selective topoisomerase IIα-targeting anticancer agents
Bioorganic & Medicinal Chemistry 2018.0
Topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study of dihydroxylated 2,6-diphenyl-4-aryl pyridines
Bioorganic & Medicinal Chemistry 2015.0
Discovery of a 2,4-diphenyl-5,6-dihydrobenzo(h)quinolin-8-amine derivative as a novel DNA intercalating topoisomerase IIα poison
European Journal of Medicinal Chemistry 2021.0
Benzothiopyranoindole- and pyridothiopyranoindole-based antiproliferative agents targeting topoisomerases
European Journal of Medicinal Chemistry 2019.0