Rational design, synthesis, and evaluation of novel 2,4-Chloro- and Hydroxy-Substituted diphenyl Benzofuro[3,2-b]Pyridines: Non-intercalative catalytic topoisomerase I and II dual inhibitor

European Journal of Medicinal Chemistry
2017.0

Abstract

Novel series of conformationally constrained 2,4-chloro- and hydroxy-substituted diphenyl benzofuro[3,2-b]pyridines were rationally designed and synthesized. Their biological activities were evaluated for topoisomerase I and II inhibitory activity, and antiproliferative activity against several human cancer cell lines for the development of novel anticancer agents. Most of the compounds with phenol moiety at 4-position of central pyridine exhibited significant dual topoisomerase I and II inhibitory activities, and strong antiproliferative activity in low micromolar range. Structure activity relationship study suggested that phenol moiety at 4-position of the central pyridine regardless of chlorophenyl moiety at 2-position of the central pyridine has an important role in dual topoisomerase inhibitory activity as well as antiproliferative activity. For investigation of mode of action for compound 14 which displayed the most strong dual topoisomerase I and II inhibitory activity and antiproliferative activity against HCT15 cell, we performed cleavable complex assay, band depletion assay, comet assay, and competitive EtBr displacement assay. Compound 14 functioned as non-intercalative catalytic topo I and II dual inhibitor. In addition, compound 14 induced apoptosis in HCT15 cells through increase of Bax, decrease of Bcl-2 and increase of PARP cleavage.

Knowledge Graph

Similar Paper

Rational design, synthesis, and evaluation of novel 2,4-Chloro- and Hydroxy-Substituted diphenyl Benzofuro[3,2-b]Pyridines: Non-intercalative catalytic topoisomerase I and II dual inhibitor
European Journal of Medicinal Chemistry 2017.0
Dihydroxylated 2,6-diphenyl-4-chlorophenylpyridines: Topoisomerase I and IIα dual inhibitors with DNA non-intercalative catalytic activity
European Journal of Medicinal Chemistry 2017.0
2-Chlorophenyl-substituted benzofuro[3,2-b]pyridines with enhanced topoisomerase inhibitory activity: The role of the chlorine substituent
Bioorganic & Medicinal Chemistry Letters 2017.0
Design, synthesis, and structure-activity relationships of new benzofuro[3,2-b]pyridin-7-ols as DNA topoisomerase II inhibitors
Bioorganic & Medicinal Chemistry Letters 2018.0
A new series of 2-phenol-4-aryl-6-chlorophenyl pyridine derivatives as dual topoisomerase I/II inhibitors: Synthesis, biological evaluation and 3D-QSAR study
European Journal of Medicinal Chemistry 2016.0
Topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study of dihydroxylated 2,6-diphenyl-4-aryl pyridines
Bioorganic & Medicinal Chemistry 2015.0
Novel 2-aryl-4-(4′-hydroxyphenyl)-5H-indeno[1,2-b]pyridines as potent DNA non-intercalative topoisomerase catalytic inhibitors
European Journal of Medicinal Chemistry 2017.0
Synthesis and SAR study of new hydroxy and chloro-substituted 2,4-diphenyl 5H-chromeno[4,3-b]pyridines as selective topoisomerase IIα-targeting anticancer agents
Bioorganic & Medicinal Chemistry 2018.0
Design and synthesis of conformationally constrained hydroxylated 4-phenyl-2-aryl chromenopyridines as novel and selective topoisomerase II-targeted antiproliferative agents
Bioorganic & Medicinal Chemistry 2015.0
Synthesis of 2,4-diaryl chromenopyridines and evaluation of their topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship
European Journal of Medicinal Chemistry 2011.0