Determination of binding modes and binding constants for the complexes of 6H-pyrido[4,3-b]carbazole derivatives with DNA

Bioorganic & Medicinal Chemistry
2017.0

Abstract

The binding modes and binding constants for the complexes of forty types of pyridocarbazole derivatives 1-40 with double stranded DNAs (dsDNAs) were reported. The binding modes were determined by a combination of a deflection spectroscopy and orientation of the corresponding molecule in the DNA-based film with chain alignment. All of the compounds exhibited the intercalation-binding mode. Its binding constants Ka for the complexes, determined by quartz crystal microbalance (QCM), varied from 1.7×105 to 4.5×107M-1 according to the substituents on the pyridocarbazole framework and the sequences of dsDNA. The binding constants Ka of pyridocarbazole derivatives possessing the 2-(ω-amino)alkyl group and 5-(ω-amino)alkylcarbamyl group were larger than those of the corresponding ω-ureido derivatives. These ω-amino compounds exhibited strong GC base-pair preference in complexation. The Ka values decreased with the increasing NaCl concentration. It was clarified by a molecular modeling that the framework of the 2-tethered ω-amino derivative was completely overlapped with the stacking GC base-pairs leading to the formation of the stable intercalative-complex, and that the framework of the 5-tethered ureido derivative was half overlapped leading to the formation of the unstable complex. Furthermore, there were good linear relationships between lnKa and the relative stabilities Srel of the complexes. Contrary to our expectation, there was no linear relationship between lnKa and IC50 against Sarcoma-180, NIH3T3, and HeLa S-3 cell lines.

Knowledge Graph

Similar Paper

Determination of binding modes and binding constants for the complexes of 6H-pyrido[4,3-b]carbazole derivatives with DNA
Bioorganic & Medicinal Chemistry 2017.0
Photochemical electrocyclisation of 3-vinylindoles to pyrido[2,3-a]-, pyrido[4,3-a]- and thieno[2,3-a]-carbazoles: Design, synthesis, DNA binding and antitumor cell cytotoxicity
European Journal of Medicinal Chemistry 2009.0
1-[(ω-Aminoalkyl)amino]-4-[N-(ω-aminoalkyl)carbamoyl]-9-oxo-9,10-dihydro- acridines as Intercalating Cytotoxic Agents:  Synthesis, DNA Binding, and Biological Evaluation
Journal of Medicinal Chemistry 1997.0
Pyrrolo[2,3-a]carbazoles as Potential Cyclin Dependent Kinase 1 (CDK1) Inhibitors. Synthesis, Biological Evaluation, and Binding Mode through Docking Simulations
Journal of Medicinal Chemistry 2008.0
Structure, DNA minor groove binding, and base pair specificity of alkyl- and aryl-linked bis(amidinobenzimidazoles) and bis(amidinoindoles)
Journal of Medicinal Chemistry 1993.0
A class of novel carboline intercalators: Their synthesis, in vitro anti-proliferation, in vivo anti-tumor action, and 3D QSAR analysis
Bioorganic & Medicinal Chemistry 2010.0
Novel isoxazole polycyclic aromatic hydrocarbons as DNA-intercalating agents
European Journal of Medicinal Chemistry 2012.0
Comparative computer graphics and solution studies of the DNA interaction of substituted anthraquinones based on doxorubicin and mitoxantrone
Journal of Medicinal Chemistry 1985.0
Anthracene-9,10-diones as potential anticancer agents. Synthesis, DNA-binding, and biological studies on a series of 2,6-disubstituted derivatives
Journal of Medicinal Chemistry 1992.0
Synthesis and biological evaluation of DNA targeting flexible side-chain substituted β-carboline derivatives
Bioorganic & Medicinal Chemistry Letters 2001.0