Synthesis and antiproliferative activity of a series of novel 6-substituted pyrido[3,2- d ]pyrimidines as potential nonclassical lipophilic antifolates targeting dihydrofolate reductase

European Journal of Medicinal Chemistry
2017.0

Abstract

Dihydrofolate reductase (DHFR) has been a well-recognized target for the treatment of many diseases. Based on 8,10-dideazaminopterins, which are classical antifolates that potently inhibit DHFR, we have designed a series of novel 2,4-diamino-6-substituted pyrido[3,2-d]pyrimidines. By removing the glutamate moiety and introducing lipophilic groups, we hoped to improve passive diffuse through the cell membranes. The target compounds were efficiently synthesized using one-pot procedure and evaluated in vitro for DHFR inhibition and antitumor activity. Compounds 5e, 5h, 5i and 5k were the most potent inhibitors of recombinant human DHFR (rhDHFR) with IC50 values in the range 0.2-1.0 μM. Analysis using flow cytometric indicated that the effect of compound 5k on cell cycle progression was linked to induction of S phase arrest. Compounds 5g, 5h, 5i and 5k showed broad spectrum antitumor activity against four different tumor cell lines, with IC50 values in the range 0.07-23 μM. Molecular docking investigations showed that the trimethoyphenyl ring of compound 5k occupied a position near the cofactor-binding site in the rhDHFR-inhibitor complex, with close intermolecular contacts with Asp21, Phe31, Ser59, Ile60 and Pro61.

Knowledge Graph

Similar Paper

Synthesis and antiproliferative activity of a series of novel 6-substituted pyrido[3,2- d ]pyrimidines as potential nonclassical lipophilic antifolates targeting dihydrofolate reductase
European Journal of Medicinal Chemistry 2017.0
Targeting dihydrofolate reductase: Design, synthesis and biological evaluation of novel 6-substituted pyrrolo[2,3-d]pyrimidines as nonclassical antifolates and as potential antitumor agents
European Journal of Medicinal Chemistry 2019.0
Synthesis of 5-methyl-5-deaza nonclassical antifolates as inhibitors of dihydrofolate reductases and as potential antipneumocystis, antitoxoplasma, and antitumor agents
Journal of Medicinal Chemistry 1993.0
Synthesis and Biological Activities of Tricyclic Conformationally Restricted Tetrahydropyrido Annulated Furo[2,3-d]pyrimidines as Inhibitors of Dihydrofolate Reductases
Journal of Medicinal Chemistry 1998.0
2,4-Diamino-5-deaza-6-Substituted Pyrido[2,3-d]pyrimidine Antifolates as Potent and Selective Nonclassical Inhibitors of Dihydrofolate Reductases
Journal of Medicinal Chemistry 1996.0
Synthesis and Dihydrofolate Reductase Inhibitory Activities of 2,4-Diamino-5-deaza and 2,4-Diamino-5,10-dideaza Lipophilic Antifolates
Journal of Medicinal Chemistry 1997.0
Novel 2,4-Diamino-5-substituted-pyrrolo[2,3-d]pyrimidines as Classical and Nonclassical Antifolate Inhibitors of Dihydrofolate Reductases
Journal of Medicinal Chemistry 1995.0
The Effect of 5-Alkyl Modification on the Biological Activity of Pyrrolo[2,3-d]pyrimidine Containing Classical and Nonclassical Antifolates as Inhibitors of Dihydrofolate Reductase and as Antitumor and/or Antiopportunistic Infection Agents
Journal of Medicinal Chemistry 2008.0
Inhibitors of dihydrofolate reductase as antitumor agents: design, synthesis and biological evaluation of a series of novel nonclassical 6-substituted pyrido[3,2-d]pyrimidines with a three- to five-carbon bridge
Bioorganic & Medicinal Chemistry 2018.0
Design and Synthesis of Classical and Nonclassical 6-Arylthio-2,4-diamino-5-ethylpyrrolo[2,3-d]pyrimidines as Antifolates
Journal of Medicinal Chemistry 2007.0