Design, Synthesis, and Biological Evaluation of Coupled Bioactive Scaffolds as Potential Anticancer Agents for Dual Targeting of Dihydrofolate Reductase and Thioredoxin Reductase

Journal of Medicinal Chemistry
2017.0

Abstract

The dihydrofolate reductase (DHFR) and thioredoxin reductase (TrxR) enzymes are involved in the process of tumor cell growth and survival. The 4,6-diamino-1,2-dihydro-1,3,5-triazine scaffold is well-established as a useful scaffold for DHFR inhibition, while chalcones have been reported to be inhibitors of TrxR. In this study, 15 novel compounds designed by the structural combination of the 4,6-diamino-1,2-dihydro-1,3,5-triazine and chalcone scaffolds via a diether linker were successfully synthesized and characterized. All of the compounds demonstrated dual inhibition against DHFR and TrxR when they were assessed by in vitro enzyme assays. The compounds also exhibited antiproliferative activity against the MCF-7 and HCT116 cells. The more potent analogs 14 and 15 were found to inhibit cellular DHFR and TrxR activities in HCT116 cells. Therefore, this study provided compelling evidence that 14 and 15 could exert their anticancer property via multitarget inhibition at the cellular level.

Knowledge Graph

Similar Paper

Design, Synthesis, and Biological Evaluation of Coupled Bioactive Scaffolds as Potential Anticancer Agents for Dual Targeting of Dihydrofolate Reductase and Thioredoxin Reductase
Journal of Medicinal Chemistry 2017.0
Applying the designed multiple ligands approach to inhibit dihydrofolate reductase and thioredoxin reductase for anti-proliferative activity
European Journal of Medicinal Chemistry 2016.0
Design, synthesis, docking studies and biological evaluation of novel dihydro-1,3,5-triazines as human DHFR inhibitors
European Journal of Medicinal Chemistry 2017.0
Structure modification and biological evaluation of indole-chalcone derivatives as anti-tumor agents through dual targeting tubulin and TrxR
European Journal of Medicinal Chemistry 2022.0
Mechanism Inspired Development of Rationally Designed Dihydrofolate Reductase Inhibitors as Anticancer Agents
Journal of Medicinal Chemistry 2012.0
Design, synthesis, biological evaluation and X-ray crystal structure of novel classical 6,5,6-tricyclic benzo[4,5]thieno[2,3-d]pyrimidines as dual thymidylate synthase and dihydrofolate reductase inhibitors
Bioorganic & Medicinal Chemistry 2011.0
Synthesis, in vitro antitumor activity, dihydrofolate reductase inhibition, DNA intercalation and structure–activity relationship studies of 1,3,5-triazine analogues
Bioorganic & Medicinal Chemistry Letters 2016.0
Synthesis of N-{4-[(2,4-Diamino-5-methyl-4,7-dihydro-3H- pyrrolo[2,3-d]pyrimidin-6-yl)thio]benzoyl}-<scp>l</scp>-glutamic Acid and N-{4-[(2-Amino-4-oxo-5-methyl-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin- 6-yl)thio]benzoyl}-<scp>l</scp>-glutamic Acid as Dual Inhibitors of Dihydrofolate Reductase and Thymidylate Synthase and as Potential Antitumor Agents
Journal of Medicinal Chemistry 2005.0
Pteridine–sulfonamide conjugates as dual inhibitors of carbonic anhydrases and dihydrofolate reductase with potential antitumor activity
Bioorganic &amp; Medicinal Chemistry 2010.0
Design, Synthesis, and Biological Activities of Classical N-{4-[2-(2-Amino-4-ethylpyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl}-<scp>l</scp>-glutamic Acid and Its 6-Methyl Derivative as Potential Dual Inhibitors of Thymidylate Synthase and Dihydrofolate Reductase and as Potential Antitumor Agents
Journal of Medicinal Chemistry 2003.0