Target Elucidation by Cocrystal Structures of NADH-Ubiquinone Oxidoreductase of Plasmodium falciparum (PfNDH2) with Small Molecule To Eliminate Drug-Resistant Malaria

Journal of Medicinal Chemistry
2017.0

Abstract

Drug-resistant malarial strains have been continuously emerging recently, which posts a great challenge for the global health. Therefore, new antimalarial drugs with novel targeting mechanisms are urgently needed for fighting drug-resistant malaria. NADH-ubiquinone oxidoreductase of Plasmodium falciparum (PfNDH2) represents a viable target for antimalarial drug development. However, the absence of structural information on PfNDH2 limited rational drug design and further development. Herein, we report high resolution crystal structures of the PfNDH2 protein for the first time in Apo-, NADH-, and RYL-552 (a new inhibitor)-bound states. The PfNDH2 inhibitor exhibits excellent potency against both drug-resistant strains in vitro and parasite-infected mice in vivo via a potential allosteric mechanism. Furthermore, it was found that the inhibitor can be used in combination with dihydroartemisinin (DHA) synergistically. These findings not only are important for malarial PfNDH2 protein-based drug development but could also have broad implications for other NDH2-containing pathogenic microorganisms such as Mycobacterium tuberculosis.

Knowledge Graph

Similar Paper

Target Elucidation by Cocrystal Structures of NADH-Ubiquinone Oxidoreductase of Plasmodium falciparum (PfNDH2) with Small Molecule To Eliminate Drug-Resistant Malaria
Journal of Medicinal Chemistry 2017.0
Type II NADH dehydrogenase of the respiratory chain of Plasmodium falciparum and its inhibitors
Bioorganic & Medicinal Chemistry Letters 2009.0
Design and synthesis of small molecular dual inhibitor of falcipain-2 and dihydrofolate reductase as antimalarial agent
Bioorganic & Medicinal Chemistry Letters 2012.0
Docking and Database Screening Reveal New Classes ofPlasmodiumfalciparumDihydrofolate Reductase Inhibitors
Journal of Medicinal Chemistry 2003.0
Identification, Design and Biological Evaluation of Heterocyclic Quinolones Targeting Plasmodium falciparum Type II NADH:Quinone Oxidoreductase (PfNDH2)
Journal of Medicinal Chemistry 2012.0
Discovery of new antimalarial agents: Second-generation dual inhibitors against FP-2 and PfDHFR via fragments assembely
Bioorganic & Medicinal Chemistry 2017.0
Design and Synthesis of Potent Inhibitors of the Malaria Parasite Dihydroorotate Dehydrogenase
Journal of Medicinal Chemistry 2007.0
Antimalarial and Structural Studies of Pyridine-Containing Inhibitors of 1-Deoxyxylulose-5-phosphate Reductoisomerase
ACS Medicinal Chemistry Letters 2013.0
Structure-Guided Lead Optimization of Triazolopyrimidine-Ring Substituents Identifies PotentPlasmodium falciparumDihydroorotate Dehydrogenase Inhibitors with Clinical Candidate Potential
Journal of Medicinal Chemistry 2011.0
Specific inhibitors of Plasmodium falciparum thioredoxin reductase as potential antimalarial agents
Bioorganic & Medicinal Chemistry Letters 2006.0