Structure-Guided Lead Optimization of Triazolopyrimidine-Ring Substituents Identifies PotentPlasmodium falciparumDihydroorotate Dehydrogenase Inhibitors with Clinical Candidate Potential

Journal of Medicinal Chemistry
2011.0

Abstract

Drug therapy is the mainstay of antimalarial therapy, yet current drugs are threatened by the development of resistance. In an effort to identify new potential antimalarials, we have undertaken a lead optimization program around our previously identified triazolopyrimidine-based series of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. The X-ray structure of PfDHODH was used to inform the medicinal chemistry program allowing the identification of a potent and selective inhibitor (DSM265) that acts through DHODH inhibition to kill both sensitive and drug resistant strains of the parasite. This compound has similar potency to chloroquine in the humanized SCID mouse P. falciparum model, can be synthesized by a simple route, and rodent pharmacokinetic studies demonstrated it has excellent oral bioavailability, a long half-life and low clearance. These studies have identified the first candidate in the triazolopyrimidine series to meet previously established progression criteria for efficacy and ADME properties, justifying further development of this compound toward clinical candidate status.

Knowledge Graph

Similar Paper

Structure-Guided Lead Optimization of Triazolopyrimidine-Ring Substituents Identifies PotentPlasmodium falciparumDihydroorotate Dehydrogenase Inhibitors with Clinical Candidate Potential
Journal of Medicinal Chemistry 2011.0
Lead Optimization of Aryl and Aralkyl Amine-Based Triazolopyrimidine Inhibitors ofPlasmodium falciparumDihydroorotate Dehydrogenase with Antimalarial Activity in Mice
Journal of Medicinal Chemistry 2011.0
Tetrahydro-2-naphthyl and 2-Indanyl Triazolopyrimidines Targeting Plasmodium falciparum Dihydroorotate Dehydrogenase Display Potent and Selective Antimalarial Activity
Journal of Medicinal Chemistry 2016.0
Novel Selective and Potent Inhibitors of Malaria Parasite Dihydroorotate Dehydrogenase: Discovery and Optimization of Dihydrothiophenone Derivatives
Journal of Medicinal Chemistry 2013.0
Design and Synthesis of Potent Inhibitors of the Malaria Parasite Dihydroorotate Dehydrogenase
Journal of Medicinal Chemistry 2007.0
Evaluation of 7-arylaminopyrazolo[1,5-a]pyrimidines as anti-Plasmodium falciparum, antimalarial, and Pf-dihydroorotate dehydrogenase inhibitors
European Journal of Medicinal Chemistry 2017.0
Molecular modeling studies, synthesis and biological evaluation of derivatives of N-phenylbenzamide as Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors
Medicinal Chemistry Research 2011.0
Comparative study between the anti-P. falciparum activity of triazolopyrimidine, pyrazolopyrimidine and quinoline derivatives and the identification of new PfDHODH inhibitors
European Journal of Medicinal Chemistry 2021.0
Aminoazabenzimidazoles, a Novel Class of Orally Active Antimalarial Agents
Journal of Medicinal Chemistry 2014.0
Antimalarial Lead-Optimization Studies on a 2,6-Imidazopyridine Series within a Constrained Chemical Space To Circumvent Atypical Dose–Response Curves against Multidrug Resistant Parasite Strains
Journal of Medicinal Chemistry 2018.0