Identification of N-{cis-3-[Methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]cyclobutyl}propane-1-sulfonamide (PF-04965842): A Selective JAK1 Clinical Candidate for the Treatment of Autoimmune Diseases

Journal of Medicinal Chemistry
2018.0

Abstract

Janus kinases (JAKs) are intracellular tyrosine kinases that mediate the signaling of numerous cytokines and growth factors involved in the regulation of immunity, inflammation, and hematopoiesis. As JAK1 pairs with JAK2, JAK3, and TYK2, a JAK1-selective inhibitor would be expected to inhibit many cytokines involved in inflammation and immune function while avoiding inhibition of the JAK2 homodimer regulating erythropoietin and thrombopoietin signaling. Our efforts began with tofacitinib, an oral JAK inhibitor approved for the treatment of rheumatoid arthritis. Through modification of the 3-aminopiperidine linker in tofacitinib, we discovered highly selective JAK1 inhibitors with nanomolar potency in a human whole blood assay. Improvements in JAK1 potency and selectivity were achieved via structural modifications suggested by X-ray crystallographic analysis. After demonstrating efficacy in a rat adjuvant-induced arthritis (rAIA) model, PF-04965842 (25) was nominated as a clinical candidate for the treatment of JAK1-mediated autoimmune diseases.

Knowledge Graph

Similar Paper

Identification of N-{cis-3-[Methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]cyclobutyl}propane-1-sulfonamide (PF-04965842): A Selective JAK1 Clinical Candidate for the Treatment of Autoimmune Diseases
Journal of Medicinal Chemistry 2018.0
Discovery of potent anti-inflammatory 4-(4,5,6,7-tetrahydrofuro[3,2-c]pyridin-2-yl) pyrimidin-2-amines for use as Janus kinase inhibitors
Bioorganic & Medicinal Chemistry 2019.0
Janus kinases (JAKs): The efficient therapeutic targets for autoimmune diseases and myeloproliferative disorders
European Journal of Medicinal Chemistry 2020.0
Discovery of novel selective Janus kinase 2 (JAK2) inhibitors bearing a 1H-pyrazolo[3,4-d]pyrimidin-4-amino scaffold
Bioorganic & Medicinal Chemistry 2019.0
Benzimidazole Derivatives as Potent JAK1-Selective Inhibitors
Journal of Medicinal Chemistry 2015.0
Application of Sequential Palladium Catalysis for the Discovery of Janus Kinase Inhibitors in the Benzo[c]pyrrolo[2,3-h][1,6]naphthyridin-5-one (BPN) Series
Journal of Medicinal Chemistry 2018.0
Phenylaminopyrimidines as inhibitors of Janus kinases (JAKs)
Bioorganic & Medicinal Chemistry Letters 2009.0
Design, synthesis and structure-activity relationship study of aminopyridine derivatives as novel inhibitors of Janus kinase 2
Bioorganic & Medicinal Chemistry Letters 2019.0
Discovery and Development of Janus Kinase (JAK) Inhibitors for Inflammatory Diseases
Journal of Medicinal Chemistry 2014.0
Discovery of imidazopyrrolopyridines derivatives as novel and selective inhibitors of JAK2
European Journal of Medicinal Chemistry 2021.0