Design, synthesis and biological evaluation of multifunctional tacrine-curcumin hybrids as new cholinesterase inhibitors with metal ions-chelating and neuroprotective property

Bioorganic & Medicinal Chemistry
2017.0

Abstract

Total sixteen tacrine-curcumin hybrid compounds were designed and synthesized for the purpose of searching for multifunctional anti-Alzheimer agents. In vitro studies showed that these hybrid compounds showed good cholinesterase inhibitory activity. Particularly, the potency of K3-2 is even beyond tacrine. Some of the compounds exhibited different selectivity on acetylcholinesterase or butyrylcholinesterase due to the structural difference. Thus, the structure and activity relationship is summarized and further discussed based on molecular modeling studies. The ORAC and MTT assays indicated that the hybrid compounds possessed pronounced antioxidant activity and could effectively protect PC12 cells from the H2O2/Aβ42-induced toxicity. Moreover, the hybrid compounds also showed positive metal ions-chelating ability in vitro, suggesting a potential to halt ion-induced Aβ aggregation. All the obtained results demonstrated that the tacrine-curcumin hybrid compounds, in particular compound K3-2, can be considered as potential therapeutic agents for Alzheimer's disease.

Knowledge Graph

Similar Paper

Design, synthesis and biological evaluation of multifunctional tacrine-curcumin hybrids as new cholinesterase inhibitors with metal ions-chelating and neuroprotective property
Bioorganic & Medicinal Chemistry 2017.0
Design, synthesis and evaluation of novel tacrine-(β-carboline) hybrids as multifunctional agents for the treatment of Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2014.0
Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as dual inhibitors for cholinesterases and amyloid beta aggregation
Bioorganic & Medicinal Chemistry 2011.0
Multifunctional tacrine–flavonoid hybrids with cholinergic, β-amyloid-reducing, and metal chelating properties for the treatment of Alzheimer's disease
European Journal of Medicinal Chemistry 2013.0
Design, synthesis and bioevaluation of tacrine hybrids with cinnamate and cinnamylidene acetate derivatives as potential anti-Alzheimer drugs
MedChemComm 2015.0
Design, synthesis and evaluation of novel tacrine–coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer's disease
European Journal of Medicinal Chemistry 2013.0
Novel Tacrine−8-Hydroxyquinoline Hybrids as Multifunctional Agents for the Treatment of Alzheimer’s Disease, with Neuroprotective, Cholinergic, Antioxidant, and Copper-Complexing Properties
Journal of Medicinal Chemistry 2010.0
O-Hydroxyl- or o-amino benzylamine-tacrine hybrids: Multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation
Bioorganic & Medicinal Chemistry 2012.0
Synthesis, biological evaluation and molecular modeling study of novel tacrine–carbazole hybrids as potential multifunctional agents for the treatment of Alzheimer's disease
European Journal of Medicinal Chemistry 2014.0
Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as multi-targeted compounds against Alzheimer's disease
European Journal of Medicinal Chemistry 2016.0