Optimization of 1,4-bis(arylsulfonamido)naphthalene-N,N'-diacetic acids as inhibitors of Keap1-Nrf2 protein-protein interaction to suppress neuroinflammation

Bioorganic & Medicinal Chemistry
2021.0

Abstract

The protein-protein interaction (PPI) between kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2) is recognized as a promising target for the prevention and treatment of oxidative stress-related inflammatory diseases. Herein, a series of novel 1,4-bis(arylsulfonamido)naphthalene-N,N'-diacetic acid analogs (7p-t and 8c) were designed to further explore the structure-activity relationships of the series. Their activities were measured first with a fluorescence polarization (FP) assay and more potent compounds were further evaluated using a more sensitive time-resolved fluorescence energy transfer (TR-FRET) assay, demonstrating IC<sub>50</sub> values between 7.2 and 31.3 nM. In cytotoxicity studies, the naphthalene derivatives did not show noticeable toxicity to human HepG2-C8 and mouse brain BV-2 microglia cells. Among them, compound 7q bearing oxygen-containing fused rings was shown to significantly stimulate the cellular Nrf2 signaling pathway, including activation of antioxidant response element (ARE)-controlled expression of Nrf2 target genes and proteins. More importantly, 7q suppressed up-regulation of several pro-inflammatory cytokines in lipopolysaccharide (LPS)-challenged BV-2 microglial cells, representing a potential therapeutic application for controlling neuroinflammatory disorders.

Knowledge Graph

Similar Paper

Optimization of 1,4-bis(arylsulfonamido)naphthalene-N,N'-diacetic acids as inhibitors of Keap1-Nrf2 protein-protein interaction to suppress neuroinflammation
Bioorganic &amp; Medicinal Chemistry 2021.0
Phenyl Bis-Sulfonamide Keap1-Nrf2 Protein–Protein Interaction Inhibitors with an Alternative Binding Mode
Journal of Medicinal Chemistry 2022.0
A Comparative Assessment Study of Known Small-Molecule Keap1−Nrf2 Protein–Protein Interaction Inhibitors: Chemical Synthesis, Binding Properties, and Cellular Activity
Journal of Medicinal Chemistry 2019.0
Design, Synthesis, and Structure–Activity Relationships of Indoline-Based Kelch-like ECH-Associated Protein 1-Nuclear Factor (Erythroid-Derived 2)-Like 2 (Keap1-Nrf2) Protein–Protein Interaction Inhibitors
Journal of Medicinal Chemistry 2020.0
Discovery of Potent Keap1–Nrf2 Protein–Protein Interaction Inhibitor Based on Molecular Binding Determinants Analysis
Journal of Medicinal Chemistry 2014.0
Structure-based molecular hybridization design of Keap1-Nrf2 inhibitors as novel protective agents of acute lung injury
European Journal of Medicinal Chemistry 2021.0
Design, Synthesis, and Evaluation of Triazole Derivatives That Induce Nrf2 Dependent Gene Products and Inhibit the Keap1–Nrf2 Protein–Protein Interaction
Journal of Medicinal Chemistry 2015.0
Anti-neuroinflammatory effects of novel 5,6-dihydrobenzo[h]quinazolin-2-amine derivatives in lipopolysaccharide-stimulated BV2 microglial cells
European Journal of Medicinal Chemistry 2022.0
Discovery of benzo[g]indoles as a novel class of non-covalent Keap1-Nrf2 protein-protein interaction inhibitor
Bioorganic &amp; Medicinal Chemistry Letters 2017.0
Recent progress in Keap1-Nrf2 protein-protein interaction inhibitors
European Journal of Medicinal Chemistry 2020.0