1-[3-(4-Butylpiperidin-1-yl)propyl]-1,2,3,4-tetrahydroquinolin-2-one (77-LH-28-1) as a Model for the Rational Design of a Novel Class of Brain Penetrant Ligands with High Affinity and Selectivity for Dopamine D4 Receptor

Journal of Medicinal Chemistry
2018.0

Abstract

In the present article, the M1 mAChR bitopic agonist 1-[3-(4-butylpiperidin-1-yl)propyl]-1,2,3,4-tetrahydroquinolin-2-one (77-LH-28-1, 1) has been demonstrated to show unexpected D4R selectivity over D2R and D3R and to behave as a D4R antagonist. To better understand the structural features required for the selective interaction with the D4R and to obtain compounds unable to activate mAChRs, the aliphatic butyl chain and the piperidine nucleus of 1 were modified, affording compounds 2-14. The 4-benzylpiperidine 9 and the 4-phenylpiperazine 12 showed high D4R affinity and selectivity not only over the other D2-like subtypes, but also over M1-M5 mAChRs. Derivative 12 was also highly selective over some selected off-targets. This compound showed biased behavior, potently and partially activating Gi protein and inhibiting β-arrestin2 recruitment in functional studies. Pharmacokinetic studies demonstrated that it was characterized by a relevant brain penetration. Therefore, 12 might be a useful tool to better clarify the role played by D4R in disorders in which this subtype is involved.

Knowledge Graph

Similar Paper

1-[3-(4-Butylpiperidin-1-yl)propyl]-1,2,3,4-tetrahydroquinolin-2-one (77-LH-28-1) as a Model for the Rational Design of a Novel Class of Brain Penetrant Ligands with High Affinity and Selectivity for Dopamine D<sub>4</sub> Receptor
Journal of Medicinal Chemistry 2018.0
Design and Synthesis of Bitopic 2-Phenylcyclopropylmethylamine (PCPMA) Derivatives as Selective Dopamine D3 Receptor Ligands
Journal of Medicinal Chemistry 2020.0
Highly Potent and Selective Dopamine D<sub>4</sub> Receptor Antagonists Potentially Useful for the Treatment of Glioblastoma
Journal of Medicinal Chemistry 2022.0
Discovery, Optimization, and Characterization of ML417: A Novel and Highly Selective D<sub>3</sub> Dopamine Receptor Agonist
Journal of Medicinal Chemistry 2020.0
Re-exploring the N-phenylpicolinamide derivatives to develop mGlu4 ligands with improved affinity and in vitro microsomal stability
Bioorganic &amp; Medicinal Chemistry Letters 2015.0
A Structure–Activity Analysis of Biased Agonism at the Dopamine D2 Receptor
Journal of Medicinal Chemistry 2013.0
Bioisosteric Heterocyclic Versions of 7-{[2-(4-Phenyl-piperazin-1-yl)ethyl]propylamino}-5,6,7,8-tetrahydronaphthalen-2-ol: Identification of Highly Potent and Selective Agonists for Dopamine D3 Receptor with Potent in Vivo Activity
Journal of Medicinal Chemistry 2008.0
Discovery of dopamine D4 receptor antagonists with planar chirality
Bioorganic &amp; Medicinal Chemistry 2013.0
Structure−Affinity Relationship Study on N-[4-(4-Arylpiperazin-1-yl)butyl]arylcarboxamides as Potent and Selective Dopamine D<sub>3</sub> Receptor Ligands
Journal of Medicinal Chemistry 2002.0
Discovery and Pharmacological Profile of New 1H-Indazole-3-carboxamide and 2H-Pyrrolo[3,4-c]quinoline Derivatives as Selective Serotonin 4 Receptor Ligands
Journal of Medicinal Chemistry 2012.0