Synthesis and Characterization of Tetrahydropyran-Based Bacterial Topoisomerase Inhibitors with Antibacterial Activity against Gram-Negative Bacteria

Journal of Medicinal Chemistry
2017.0

Abstract

There is an urgent unmet medical need for novel antibiotics that are effective against a broad range of bacterial species, especially multidrug resistant ones. Tetrahydropyran-based inhibitors of bacterial type II topoisomerases (DNA gyrase and topoisomerase IV) display potent activity against Gram-positive pathogens and no target-mediated cross-resistance with fluoroquinolones. We report our research efforts aimed at expanding the antibacterial spectrum of this class of molecules toward difficult-to-treat Gram-negative pathogens. Physicochemical properties (polarity and basicity) were considered to guide the design process. Dibasic tetrahydropyran-based compounds such as 6 and 21 are potent inhibitors of both DNA gyrase and topoisomerase IV, displaying antibacterial activities against Gram-positive and Gram-negative pathogens (Staphylococcus aureus, Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii). Compounds 6 and 21 are efficacious in clinically relevant murine infection models.

Knowledge Graph

Similar Paper

Synthesis and Characterization of Tetrahydropyran-Based Bacterial Topoisomerase Inhibitors with Antibacterial Activity against Gram-Negative Bacteria
Journal of Medicinal Chemistry 2017.0
Design, Synthesis, and Characterization of Novel Tetrahydropyran-Based Bacterial Topoisomerase Inhibitors with Potent Anti-Gram-Positive Activity
Journal of Medicinal Chemistry 2013.0
Tetrahydroindazole inhibitors of bacterial type II topoisomerases. Part 2: SAR development and potency against multidrug-resistant strains
Bioorganic & Medicinal Chemistry Letters 2007.0
Discovery and Optimization of Indolyl-Containing 4-Hydroxy-2-Pyridone Type II DNA Topoisomerase Inhibitors Active against Multidrug Resistant Gram-negative Bacteria
Journal of Medicinal Chemistry 2018.0
Virtual Screening Approach and Investigation of Structure–Activity Relationships To Discover Novel Bacterial Topoisomerase Inhibitors Targeting Gram-Positive and Gram-Negative Pathogens
Journal of Medicinal Chemistry 2019.0
Novel quinoline derivatives as inhibitors of bacterial DNA gyrase and topoisomerase IV
Bioorganic & Medicinal Chemistry Letters 2013.0
Discovery of 4,5,6,7-Tetrahydrobenzo[1,2-d]thiazoles as Novel DNA Gyrase Inhibitors Targeting the ATP-Binding Site
Journal of Medicinal Chemistry 2015.0
Discovery and structure–activity relationships of a novel isothiazolone class of bacterial type II topoisomerase inhibitors
Bioorganic & Medicinal Chemistry Letters 2016.0
DNA gyrase (GyrB)/topoisomerase IV (ParE) inhibitors: Synthesis and antibacterial activity
Bioorganic & Medicinal Chemistry Letters 2009.0
Discovery of a novel azaindole class of antibacterial agents targeting the ATPase domains of DNA gyrase and Topoisomerase IV
Bioorganic & Medicinal Chemistry Letters 2012.0