Double-Winged 3-Hydroxypyrimidine-2,4-diones: Potent and Selective Inhibition against HIV-1 RNase H with Significant Antiviral Activity

Journal of Medicinal Chemistry
2017.0

Abstract

Human immunodeficiency virus (HIV) reverse transcriptase (RT)-associated ribonuclease H (RNase H) remains the only virally encoded enzymatic function yet to be exploited as an antiviral target. One of the possible challenges may be that targeting HIV RNase H is confronted with a steep substrate barrier. We have previously reported a 3-hydroxypyrimidine-2,4-dione (HPD) subtype that potently and selectively inhibited RNase H without inhibiting HIV in cell culture. We report herein a critical redesign of the HPD chemotype featuring an additional wing at the C5 position that led to drastically improved RNase H inhibition and significant antiviral activity. Structure-activity relationship (SAR) concerning primarily the length and flexibility of the two wings revealed important structural features that dictate the potency and selectivity of RNase H inhibition as well as the observed antiviral activity. Our current medicinal chemistry data also revealed that the RNase H biochemical inhibition largely correlated the antiviral activity.

Knowledge Graph

Similar Paper

Double-Winged 3-Hydroxypyrimidine-2,4-diones: Potent and Selective Inhibition against HIV-1 RNase H with Significant Antiviral Activity
Journal of Medicinal Chemistry 2017.0
6-Arylthio-3-hydroxypyrimidine-2,4-diones potently inhibited HIV reverse transcriptase-associated RNase H with antiviral activity
European Journal of Medicinal Chemistry 2018.0
Pharmacophore-based design of novel 3-hydroxypyrimidine-2,4-dione subtypes as inhibitors of HIV reverse transcriptase-associated RNase H: Tolerance of a nonflexible linker
European Journal of Medicinal Chemistry 2019.0
Design, synthesis and biological evaluations of N-Hydroxy thienopyrimidine-2,4-diones as inhibitors of HIV reverse transcriptase-associated RNase H
European Journal of Medicinal Chemistry 2017.0
3-Hydroxypyrimidine-2,4-dione-5-N-benzylcarboxamides Potently Inhibit HIV-1 Integrase and RNase H
Journal of Medicinal Chemistry 2016.0
Design, synthesis and biological evaluation of 3-hydroxyquinazoline-2,4(1H,3H)-diones as dual inhibitors of HIV-1 reverse transcriptase-associated RNase H and integrase
Bioorganic & Medicinal Chemistry 2019.0
5-Hydroxypyrido[2,3-b]pyrazin-6(5H)-one derivatives as novel dual inhibitors of HIV-1 reverse transcriptase-associated ribonuclease H and integrase
European Journal of Medicinal Chemistry 2018.0
Design, Synthesis, and Biological Evaluation of a Series of 2-Hydroxyisoquinoline-1,3(2H,4H)-diones as Dual Inhibitors of Human Immunodeficiency Virus Type 1 Integrase and the Reverse Transcriptase RNase H Domain
Journal of Medicinal Chemistry 2008.0
Design, synthesis, and biological evaluation of novel double-winged galloyl derivatives as HIV-1 RNase H inhibitors
European Journal of Medicinal Chemistry 2022.0
3-Hydroxypyrimidine-2,4-diones as an Inhibitor Scaffold of HIV Integrase
Journal of Medicinal Chemistry 2011.0