6-Arylthio-3-hydroxypyrimidine-2,4-diones potently inhibited HIV reverse transcriptase-associated RNase H with antiviral activity

European Journal of Medicinal Chemistry
2018.0

Abstract

Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) remains the only virally encoded enzymatic function not targeted by current drugs. Although a few chemotypes have been reported to inhibit HIV RNase H in biochemical assays, their general lack of significant antiviral activity in cell culture necessitates continued efforts in identifying highly potent RNase H inhibitors to confer antiviral activity. We report herein the design, synthesis, biochemical and antiviral evaluations of a new 6-arylthio subtype of the 3-hydroxypyrimidine-2,4-dione (HPD) chemotype. In biochemical assays these new analogues inhibited RT RNase H in single-digit nanomolar range without inhibiting RT polymerase (pol) at concentrations up to 10 μM, amounting to exceptional biochemical inhibitory selectivity. Many analogues also inhibited integrase strand transfer (INST) activity in low to sub micromolar range. More importantly, most analogues inhibited HIV in low micromolar range without cytotoxicity. In the end, compound 13j (RNase H IC50 = 0.005 μM; RT pol IC50 = 10 μM; INST IC50 = 4.0 μM; antiviral EC50 = 7.7 μM; CC50 > 100 μM) represents the best analogues within this series. These results characterize the new 6-arylthio-HPD subtype as a promising scaffold for HIV RNase H inhibitor discovery.

Knowledge Graph

Similar Paper

6-Arylthio-3-hydroxypyrimidine-2,4-diones potently inhibited HIV reverse transcriptase-associated RNase H with antiviral activity
European Journal of Medicinal Chemistry 2018.0
Design, synthesis and biological evaluations of N-Hydroxy thienopyrimidine-2,4-diones as inhibitors of HIV reverse transcriptase-associated RNase H
European Journal of Medicinal Chemistry 2017.0
Double-Winged 3-Hydroxypyrimidine-2,4-diones: Potent and Selective Inhibition against HIV-1 RNase H with Significant Antiviral Activity
Journal of Medicinal Chemistry 2017.0
Pharmacophore-based design of novel 3-hydroxypyrimidine-2,4-dione subtypes as inhibitors of HIV reverse transcriptase-associated RNase H: Tolerance of a nonflexible linker
European Journal of Medicinal Chemistry 2019.0
3-Hydroxypyrimidine-2,4-dione-5-N-benzylcarboxamides Potently Inhibit HIV-1 Integrase and RNase H
Journal of Medicinal Chemistry 2016.0
Design, synthesis and biological evaluation of 3-hydroxyquinazoline-2,4(1H,3H)-diones as dual inhibitors of HIV-1 reverse transcriptase-associated RNase H and integrase
Bioorganic & Medicinal Chemistry 2019.0
5-Hydroxypyrido[2,3-b]pyrazin-6(5H)-one derivatives as novel dual inhibitors of HIV-1 reverse transcriptase-associated ribonuclease H and integrase
European Journal of Medicinal Chemistry 2018.0
Design, Synthesis, and Biological Evaluation of a Series of 2-Hydroxyisoquinoline-1,3(2H,4H)-diones as Dual Inhibitors of Human Immunodeficiency Virus Type 1 Integrase and the Reverse Transcriptase RNase H Domain
Journal of Medicinal Chemistry 2008.0
Quinolinonyl Non-Diketo Acid Derivatives as Inhibitors of HIV-1 Ribonuclease H and Polymerase Functions of Reverse Transcriptase
Journal of Medicinal Chemistry 2021.0
Basic Quinolinonyl Diketo Acid Derivatives as Inhibitors of HIV Integrase and their Activity against RNase H Function of Reverse Transcriptase
Journal of Medicinal Chemistry 2014.0