Synthesis, biological evaluation and molecular modeling of imidazo[1,2-a]pyridine derivatives as potent antitubulin agents

Bioorganic & Medicinal Chemistry
2017.0

Abstract

Two series of novel 5,7-diarylimidazo[1,2-a]pyridine-8-carbonitrile derivatives (3a-3q and 7a-7n) were designed by modification of CA-4 pharmacophore to develop colchicine targeted antitubulin agents. All compounds were efficiently synthesized and evaluated for their cytotoxicity against five selected cancer cell lines (HT-29, H460, A549, MKN-45 and SMMC-7721) which got an insight in structure and activity relationships (SARs). Several molecules (7e, 7f, 7h-7j and 7m) were disclosed to exhibit promising antiproliferative activity with IC50 values in double-digit nanomolar degree. Optimization toward these compounds led to the discovery of a promising lead 7e, which showed noteworthy potency with IC50 value ranging from 0.01 to 3.2µM superior to CA-4 and Crolibulin. Importantly, immunofluorescence staining and colchcine competitive binding assay revealed that microtubule dynamics was disrupted by 7e by binding at the colchicine site of tubulin. Moreover, molecular docking studies suggested the binding of this mimic at colchcine-binding site is similar to Crolibulin, as was in conformity with the observed SARs for these compounds.

Knowledge Graph

Similar Paper

Synthesis, biological evaluation and molecular modeling of imidazo[1,2-a]pyridine derivatives as potent antitubulin agents
Bioorganic & Medicinal Chemistry 2017.0
Synthesis and biological evaluation of N-alkyl-N-(4-methoxyphenyl)pyridin-2-amines as a new class of tubulin polymerization inhibitors
Bioorganic & Medicinal Chemistry 2013.0
Discovery of novel 2-phenyl-imidazo[1,2-a]pyridine analogues targeting tubulin polymerization as antiproliferative agents
European Journal of Medicinal Chemistry 2016.0
Design, synthesis and bioevaluation of 6-aryl-1-(3,4,5-trimethoxyphenyl)-1H-benzo[d]imidazoles as tubulin polymerization inhibitors
European Journal of Medicinal Chemistry 2021.0
Synthesis and biological evaluation of a series of podophyllotoxins derivatives as a class of potent antitubulin agents
Bioorganic & Medicinal Chemistry 2012.0
Synthesis, Biological Evaluation, and Molecular Docking of Arylpyridines as Antiproliferative Agent Targeting Tubulin
ACS Medicinal Chemistry Letters 2020.0
Synthesis and mechanism of action of novel pyrimidinyl pyrazole derivatives possessing antiproliferative activity
Bioorganic & Medicinal Chemistry Letters 2002.0
Design, synthesis, and bioevaluation of imidazo [1,2–a] pyrazine derivatives as tubulin polymerization inhibitors with potent anticancer activities
Bioorganic & Medicinal Chemistry 2022.0
Design, synthesis, and biological evaluation of 1-substituted -2-aryl imidazoles targeting tubulin polymerization as potential anticancer agents
European Journal of Medicinal Chemistry 2019.0
Synthesis and biological evaluation of cis -restricted triazole/tetrazole mimics of combretastatin-benzothiazole hybrids as tubulin polymerization inhibitors and apoptosis inducers
Bioorganic & Medicinal Chemistry 2017.0