Design, synthesis, and bioevaluation of imidazo [1,2–a] pyrazine derivatives as tubulin polymerization inhibitors with potent anticancer activities

Bioorganic & Medicinal Chemistry
2022.0

Abstract

Through structural optimization and ring fusion strategy, we designed a series of novel imidazo[1,2-a]pyrazine derivatives as potential tubulin inhibitors. These compounds displayed potent anti-proliferative activities (micromolar to nanomolar) against a panel of cancer cell lines (including HepG-2, HCT-116, A549 and MDA-MB-231 cells). Among them, compound TB-25 exhibited the strongest inhibitory effects against HCT-116 cells with an IC<sub>50</sub> of 23 nM. Mechanism studies revealed that TB-25 could effectively inhibit tubulin polymerization in vitro, and destroy the dynamic equilibrium of microtubules in HCT-116 cells. In addition, TB-25 dose-dependently induced G2/M phase cell cycle arrest and apoptosis in HCT-116 cells. Furthermore, TB-25 suppressed HCT-116 cell migration in a concentration-dependent manner. Finally, molecular docking showed that TB-25 fitted well in the colchicine binding site of tubulin and overlapped nicely with CA-4. Collectively, these results suggest that TB-25 represents a promising tubulin inhibitor deserving further investigation.

Knowledge Graph

Similar Paper

Design, synthesis, and bioevaluation of imidazo [1,2–a] pyrazine derivatives as tubulin polymerization inhibitors with potent anticancer activities
Bioorganic &amp; Medicinal Chemistry 2022.0
Design, synthesis, and bioevaluation of pyrazolo[1,5-a]pyrimidine derivatives as tubulin polymerization inhibitors targeting the colchicine binding site with potent anticancer activities
European Journal of Medicinal Chemistry 2020.0
Design, synthesis and bioevaluation of 6-aryl-1-(3,4,5-trimethoxyphenyl)-1H-benzo[d]imidazoles as tubulin polymerization inhibitors
European Journal of Medicinal Chemistry 2021.0
Discovery of novel 2-phenyl-imidazo[1,2-a]pyridine analogues targeting tubulin polymerization as antiproliferative agents
European Journal of Medicinal Chemistry 2016.0
Design, synthesis and biological evaluation of imidazopyridine/imidazopyrimidine-benzimidazole conjugates as potential anticancer agents
MedChemComm 2014.0
Synthesis, biological evaluation and molecular docking of benzimidazole grafted benzsulfamide-containing pyrazole ring derivatives as novel tubulin polymerization inhibitors
Bioorganic &amp; Medicinal Chemistry 2019.0
Synthesis, biological evaluation, and molecular docking studies of novel 1-benzene acyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as potential tubulin polymerization inhibitors
European Journal of Medicinal Chemistry 2015.0
Synthesis, biological evaluation and molecular modeling of imidazo[1,2-a]pyridine derivatives as potent antitubulin agents
Bioorganic &amp; Medicinal Chemistry 2017.0
Design, Synthesis, and Biological Evaluation of 1-Methyl-1,4-dihydroindeno[1,2-c]pyrazole Analogues as Potential Anticancer Agents Targeting Tubulin Colchicine Binding Site
Journal of Medicinal Chemistry 2016.0
Design, synthesis and biological evaluation of 2-phenylquinoline-4-carboxamide derivatives as a new class of tubulin polymerization inhibitors
Bioorganic &amp; Medicinal Chemistry 2017.0