Novel Imidazo[4,5-c][1,2,6]thiadiazine 2,2-dioxides as antiproliferative trypanosoma cruzi drugs: Computational screening from neural network, synthesis and in vivo biological properties

European Journal of Medicinal Chemistry
2017.0

Abstract

A new family of imidazo[4,5-c][1,2,6]thiadiazine 2,2-dioxide with antiproliferative Trypanosoma cruzi properties was identified from a neural network model published by our group. The synthesis and evaluation of this new class of trypanocidal agents are described. These compounds inhibit the growth of Trypanosoma cruzi, comparable with benznidazole or nifurtimox. In vitro assays were performed to study their effects on the growth of the epimastigote form of the Tulahuen 2 strain, as well as the epimastigote and amastigote forms of CL clone B5 of Trypanosoma cruzi. To verify selectivity towards parasite cells, the non-specific cytotoxicity of the most relevant compounds was studied in mammalian cells, i.e. J774 murine macrophages and NCTC clone 929 fibroblasts. Furthermore, these compounds were assayed regarding the inhibition of cruzipain. In vivo studies revealed that one of the compounds, 19, showed interesting trypanocidal activity, and could be a very promising candidate for the treatment of Chagas disease.

Knowledge Graph

Similar Paper

Novel Imidazo[4,5-c][1,2,6]thiadiazine 2,2-dioxides as antiproliferative trypanosoma cruzi drugs: Computational screening from neural network, synthesis and in vivo biological properties
European Journal of Medicinal Chemistry 2017.0
Structural Investigation of Anti-Trypanosoma cruzi 2-Iminothiazolidin-4-ones Allows the Identification of Agents with Efficacy in Infected Mice
Journal of Medicinal Chemistry 2012.0
Novel 2-arylazoimidazole derivatives as inhibitors of Trypanosoma cruzi proliferation: Synthesis and evaluation of their biological activity
European Journal of Medicinal Chemistry 2017.0
Structural design, synthesis and pharmacological evaluation of thiazoles against Trypanosoma cruzi
European Journal of Medicinal Chemistry 2017.0
New Class of Antitrypanosomal Agents Based on Imidazopyridines
ACS Medicinal Chemistry Letters 2017.0
2-(phenylthio)ethylidene derivatives as anti-Trypanosoma cruzi compounds: Structural design, synthesis and antiparasitic activity
European Journal of Medicinal Chemistry 2019.0
Optimization of anti-Trypanosoma cruzi oxadiazoles leads to identification of compounds with efficacy in infected mice
Bioorganic & Medicinal Chemistry 2012.0
Synthesis and biological evaluation of 2-methyl-1H-benzimidazole-5-carbohydrazides derivatives as modifiers of redox homeostasis of Trypanosoma cruzi
Bioorganic & Medicinal Chemistry Letters 2017.0
Triazolopyrimidines and Imidazopyridines: Structure–Activity Relationships and in Vivo Efficacy for Trypanosomiasis
ACS Medicinal Chemistry Letters 2019.0
2-Pyridyl thiazoles as novel anti-Trypanosoma cruzi agents: Structural design, synthesis and pharmacological evaluation
European Journal of Medicinal Chemistry 2014.0