New Class of Antitrypanosomal Agents Based on Imidazopyridines

ACS Medicinal Chemistry Letters
2017.0

Abstract

The present work describes the synthesis of 22 new imidazopyridine analogues arising from medicinal chemistry optimization at different sites on the molecule. Seven and 12 compounds exhibited an in vitro EC50 ≤ 1 μM against Trypanosoma cruzi (T. cruzi) and Trypanosoma brucei (T. brucei) parasites, respectively. Based on promising results of in vitro activity (EC50 < 100 nM), cytotoxicity, metabolic stability, protein binding, and pharmacokinetics (PK) properties, compound 20 was selected as a candidate for in vivo efficacy studies. This compound was screened in an acute mouse model against T.cruzi (Tulahuen strain). After established infection, mice were dosed twice a day for 5 days, and then monitored for 6 weeks using an in vivo imaging system (IVIS). Compound 20 demonstrated parasite inhibition comparable to the benznidazole treatment group. Compound 20 represents a potential lead for the development of drugs to treat trypanosomiasis.

Knowledge Graph

Similar Paper

New Class of Antitrypanosomal Agents Based on Imidazopyridines
ACS Medicinal Chemistry Letters 2017.0
Triazolopyrimidines and Imidazopyridines: Structure–Activity Relationships and in Vivo Efficacy for Trypanosomiasis
ACS Medicinal Chemistry Letters 2019.0
Novel Imidazo[4,5-c][1,2,6]thiadiazine 2,2-dioxides as antiproliferative trypanosoma cruzi drugs: Computational screening from neural network, synthesis and in vivo biological properties
European Journal of Medicinal Chemistry 2017.0
Substituted 2-Phenylimidazopyridines: A New Class of Drug Leads for Human African Trypanosomiasis
Journal of Medicinal Chemistry 2014.0
Discovery of potent nitrotriazole-based antitrypanosomal agents: In vitro and in vivo evaluation
Bioorganic &amp; Medicinal Chemistry 2015.0
Novel 2-arylazoimidazole derivatives as inhibitors of Trypanosoma cruzi proliferation: Synthesis and evaluation of their biological activity
European Journal of Medicinal Chemistry 2017.0
New Promising Compounds with in Vitro Nanomolar Activity againstTrypanosoma cruzi
ACS Medicinal Chemistry Letters 2013.0
Discovery of 4-((1-(1H-imidazol-2-yl)alkoxy)methyl)pyridines as a new class of Trypanosoma cruzi growth inhibitors
Bioorganic &amp; Medicinal Chemistry Letters 2020.0
Design, Synthesis, and Biological Evaluation of New 1-(Aryl-1H-pyrrolyl)(phenyl)methyl-1H-imidazole Derivatives as Antiprotozoal Agents
Journal of Medicinal Chemistry 2019.0
Synthesis and biological evaluation of 2-methyl-1H-benzimidazole-5-carbohydrazides derivatives as modifiers of redox homeostasis of Trypanosoma cruzi
Bioorganic &amp; Medicinal Chemistry Letters 2017.0