2-Methyltetrahydro-3-benzazepin-1-ols – The missing link in SAR of GluN2B selective NMDA receptor antagonists

Bioorganic & Medicinal Chemistry
2018.0

Abstract

The NMDA receptor containing GluN2B subunits represents a promising target for the development of drugs for the treatment of various neurological disorders including neurodegenerative diseases. In order to study the role of CH3 and OH moieties trisubstituted tetrahydro-3-benzazepines 4 were designed as missing link between tetra- and disubstituted 3-benzazepines 2 and 5. The synthesis of 4 comprises eight reaction steps starting from alanine. The intramolecular Friedel-Crafts acylation to obtain the ketone 12 and the base-catalyzed elimination of trifluoromethanesulfinate (CF3SO2-) followed by NaBH4 reduction represent the key steps. The GluN2B affinity of the cis-configured 3-benzazepin-1-ol cis-4a with a 4-phenylbutyl side chain (Ki = 252 nM) is considerably lower than the GluN2B affinity of (R,R)-2 (Ki = 17 nM) indicating the importance of the phenolic OH moiety for the interaction with the receptor protein. Introduction of an additional CH3 moiety in 2-position led to a slight decrease of GluN2B affinity as can be seen by comparing the affinity data of cis-4a and 5. The homologous phenylpentyl derivative cis-4b shows the highest GluN2B affinity (Ki = 56 nM) of this series of compounds. According to docking studies cis-4a adopts the same binding mode as the cocrystallized ligand ifenprodil-keto 1A and 5 at the interface of the GluN2B and GluN1a subunits. The same crucial H-bonds are formed between the C(O)NH2 moiety of Gln110 within the GluN2B subunit and the protonated amino moiety and the OH moiety of (R,R)-cis-4a.

Knowledge Graph

Similar Paper

2-Methyltetrahydro-3-benzazepin-1-ols – The missing link in SAR of GluN2B selective NMDA receptor antagonists
Bioorganic & Medicinal Chemistry 2018.0
Deconstruction – reconstruction approach to analyze the essential structural elements of tetrahydro-3-benzazepine-based antagonists of GluN2B subunit containing NMDA receptors
European Journal of Medicinal Chemistry 2017.0
Tetrahydro-3-benzazepines with fluorinated side chains as NMDA and σ1 receptor antagonists: Synthesis, receptor affinity, selectivity and antiallodynic activity
European Journal of Medicinal Chemistry 2019.0
Hydroxymethyl bioisosteres of phenolic GluN2B-selective NMDA receptor antagonists: Design, synthesis and pharmacological evaluation
European Journal of Medicinal Chemistry 2018.0
Negative allosteric modulators of the GluN2B NMDA receptor with phenylethylamine structure embedded in ring-expanded and ring-contracted scaffolds
European Journal of Medicinal Chemistry 2020.0
Synthesis, GluN2B affinity and selectivity of benzo[7]annulen-7-amines
Bioorganic & Medicinal Chemistry 2014.0
Conformationally constrained NR2B selective NMDA receptor antagonists derived from ifenprodil: Synthesis and biological evaluation of tetrahydro-3-benzazepine-1,7-diols
Bioorganic & Medicinal Chemistry 2010.0
Pyridine bioisosteres of potent GluN2B subunit containing NMDA receptor antagonists with benzo[7]annulene scaffold
European Journal of Medicinal Chemistry 2018.0
Synthesis and receptor binding of thiophene bioisosteres of potent GluN2B ligands with a benzo[7]annulene-scaffold
MedChemComm 2019.0
Do GluN2B subunit containing NMDA receptors tolerate a fluorine atom in the phenylalkyl side chain?
MedChemComm 2017.0