Negative allosteric modulators of the GluN2B NMDA receptor with phenylethylamine structure embedded in ring-expanded and ring-contracted scaffolds

European Journal of Medicinal Chemistry
2020.0

Abstract

A set of GluN2B NMDA receptor antagonists with conformationally restricted phenylethylamine substructure was prepared and pharmacologically evaluated. The phenylethylamine substructure was embedded in ring expanded 3-benzazocines 4 as well as ring-contracted tetralinamines 6 and indanamines 7. The ligands 4, 6 and 7 were synthesized by reductive alkylation of secondary amine 11, reductive amination of ketones 12 and 16 and nucleophilic substitution of nosylates 14 and 17. The moderate GluN2B affinity of 3-benzazocine 4d (K = 32 nM) translated into moderate cytoprotective activity (IC = 890 nM) and moderate ion channel inhibition (60% at 10 μM) in two-electrode voltage clamp experiments with GluN1a/GluN2B expressing oocytes. Although some of the tetralinamines 6 and indanamines 7 showed very high GluN2B affinity (e.g. K (7f) = 3.2 nM), they could not inhibit glutamate/glycine inducted cytotoxicity. The low cytoprotective activity of 3-benzazocines 4, tetralinamines 6 and indanamines 7 was attributed to the missing OH moiety at the benzene ring and/or in benzylic position. Docking studies showed that the novel GluN2B ligands adopt similar binding poses as Ro 25-6981 with the central H-bond interaction between the protonated amino moiety of the ligands and the carbamoyl moiety of Gln110. However, due to the lack of a second H-bond forming group, the ligands can adopt two binding poses within the ifenprodil binding pocket.

Knowledge Graph

Similar Paper

Negative allosteric modulators of the GluN2B NMDA receptor with phenylethylamine structure embedded in ring-expanded and ring-contracted scaffolds
European Journal of Medicinal Chemistry 2020.0
Deconstruction – reconstruction approach to analyze the essential structural elements of tetrahydro-3-benzazepine-based antagonists of GluN2B subunit containing NMDA receptors
European Journal of Medicinal Chemistry 2017.0
Synthesis, GluN2B affinity and selectivity of benzo[7]annulen-7-amines
Bioorganic & Medicinal Chemistry 2014.0
Hydroxymethyl bioisosteres of phenolic GluN2B-selective NMDA receptor antagonists: Design, synthesis and pharmacological evaluation
European Journal of Medicinal Chemistry 2018.0
Impact of hydroxy moieties at the benzo[7]annulene ring system of GluN2B ligands: Design, synthesis and biological evaluation
Bioorganic & Medicinal Chemistry 2019.0
2-Methyltetrahydro-3-benzazepin-1-ols – The missing link in SAR of GluN2B selective NMDA receptor antagonists
Bioorganic & Medicinal Chemistry 2018.0
Pyridine bioisosteres of potent GluN2B subunit containing NMDA receptor antagonists with benzo[7]annulene scaffold
European Journal of Medicinal Chemistry 2018.0
Structure-guided design of new indoles as negative allosteric modulators (NAMs) of N-methyl-d-aspartate receptor (NMDAR) containing GluN2B subunit
Bioorganic & Medicinal Chemistry 2016.0
Synthesis and biological evaluation of conformationally restricted GluN2B ligands derived from eliprodil
European Journal of Medicinal Chemistry 2022.0
Thiophene bioisosteres of GluN2B selective NMDA receptor antagonists: Synthesis and pharmacological evaluation of [7]annuleno[b]thiophen-6-amines
Bioorganic & Medicinal Chemistry 2020.0