Design, synthesis, and evaluation of novel l-phenylglycine derivatives as potential PPARγ lead compounds

Bioorganic & Medicinal Chemistry
2018.0

Abstract

In accordance with the structural characteristics of thiazolidinedione drugs and highly bioactive tyrosine derivatives, we tentatively designed the l-phenylglycine derivatives TM1 and TM2 based on basic principles of drug design and then synthesized them. The in vitro screening of peroxisome proliferator-activated receptor gamma (PPARγ) activated activity, α-glucosidase inhibitory and dipeptidyl peptidase-4 inhibitory activities showed that the novel molecule M5 had efficient PPAR response element (PPRE) activated activity (PPRE relative activity 105.04% at 10 μg·mL-1 compared with the positive control pioglitazone, with 100% activity). Therefore, M5 was selected as the hit compound from which the TM3 and TM4 series of compounds were further designed and synthesized. Based on the PPRE relative activities of TM3 and TM4, we discovered another new molecule, TM4h, which had the strongest PPRE relative activity (120.42% at 10 μg·mL-1). In addition, the concentration-dependent activity of the highly active compounds was determined by assaying their half-maximal effective concentration (EC50) values. The molecular physical parameter calculation and the molecular toxicity prediction were used to theoretically evaluate the lead-likeness and safety of the active compounds. In conclusion, we identified a potential PPARγ lead molecule and developed a tangible strategy for antidiabetic drug development.

Knowledge Graph

Similar Paper

Design, synthesis, and evaluation of novel l-phenylglycine derivatives as potential PPARγ lead compounds
Bioorganic & Medicinal Chemistry 2018.0
Thiazolidine-2,4-diones derivatives as PPAR-γ agonists: Synthesis, molecular docking, in vitro and in vivo antidiabetic activity with hepatotoxicity risk evaluation and effect on PPAR-γ gene expression
Bioorganic & Medicinal Chemistry Letters 2014.0
Tryptophan-containing dipeptide derivatives as potent PPARγ antagonists: Design, synthesis, biological evaluation, and molecular modeling
European Journal of Medicinal Chemistry 2008.0
Design, Synthesis, and Structure−Activity Relationship Studies of Novel 2,4,6-Trisubstituted-5-pyrimidinecarboxylic Acids as Peroxisome Proliferator-Activated Receptor γ (PPARγ) Partial Agonists with Comparable Antidiabetic Efficacy to Rosiglitazone
Journal of Medicinal Chemistry 2010.0
The Structure−Activity Relationship between Peroxisome Proliferator-Activated Receptor γ Agonism and the Antihyperglycemic Activity of Thiazolidinediones
Journal of Medicinal Chemistry 1996.0
Synthesis, in vitro and in silico studies of a PPARγ and GLUT-4 modulator with hypoglycemic effect
Bioorganic & Medicinal Chemistry Letters 2014.0
Design, synthesis, in silico molecular docking and biological evaluation of novel oxadiazole based thiazolidine-2,4-diones bis-heterocycles as PPAR-γ agonists
European Journal of Medicinal Chemistry 2014.0
Design and synthesis of 6-methyl-2-oxo-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid derivatives as PPARγ activators
Bioorganic & Medicinal Chemistry Letters 2007.0
5-Aryl thiazolidine-2,4-diones as selective PPARγ agonists
Bioorganic & Medicinal Chemistry Letters 2003.0
Design, synthesis, molecular modeling and anti-hyperglycemic evaluation of quinazolin-4(3H)-one derivatives as potential PPARγ and SUR agonists
Bioorganic & Medicinal Chemistry 2017.0