Development of novel amide–derivatized 2,4-bispyridyl thiophenes as highly potent and selective Dyrk1A inhibitors. Part II: Identification of the cyclopropylamide moiety as a key modification

European Journal of Medicinal Chemistry
2018.0

Abstract

Dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) is a potential target in Alzheimer's disease (AD) because of the established correlation between its over-expression and generation of neurofibrillary tangles (NFT) as well as the accumulation of amyloid plaques. However, the use of Dyrk1A inhibitors requires a high degree of selectivity over closely related kinases. In addition, the physicochemical properties of the Dyrk1A inhibitors need to be controlled to enable CNS permeability. In the present study, we optimized our previously published 2,4-bispyridyl thiophene class of Dyrk1A inhibitors by the synthesis of a small library of amide derivatives, carrying alkyl, cycloalkyl, as well as acidic and basic residues. Among this library, the cyclopropylamido modification (compound 4b) was identified as being highly beneficial for several crucial properties. 4b displayed high potency and selectivity against Dyrk1A over closely related kinases in cell-free assays (IC50: Dyrk1A = 3.2 nM; Dyrk1B = 72.9 nM and Clk1 = 270 nM) and inhibited the Dyrk1A activity in HeLa cells with high efficacy (IC50: 43 nM), while no significant cytotoxicity was observed. In addition, the cyclopropylamido group conferred high metabolic stability and maintained the calculated physicochemical properties in a range compatible with a potential CNS activity. Thus, based on its favourable properties, 4b can be considered as a candidate for further in vivo testing in animal models of AD.

Knowledge Graph

Similar Paper

Development of novel amide–derivatized 2,4-bispyridyl thiophenes as highly potent and selective Dyrk1A inhibitors. Part II: Identification of the cyclopropylamide moiety as a key modification
European Journal of Medicinal Chemistry 2018.0
Development of novel 2,4-bispyridyl thiophene–based compounds as highly potent and selective Dyrk1A inhibitors. Part I: Benzamide and benzylamide derivatives
European Journal of Medicinal Chemistry 2018.0
Discovery and Characterization of Selective and Ligand-Efficient DYRK Inhibitors
Journal of Medicinal Chemistry 2021.0
Systematic diversification of benzylidene heterocycles yields novel inhibitor scaffolds selective for Dyrk1A, Clk1 and CK2
European Journal of Medicinal Chemistry 2016.0
Development of DANDYs, New 3,5-Diaryl-7-azaindoles Demonstrating Potent DYRK1A Kinase Inhibitory Activity
Journal of Medicinal Chemistry 2013.0
Novel selective thiadiazine DYRK1A inhibitor lead scaffold with human pancreatic β-cell proliferation activity
European Journal of Medicinal Chemistry 2018.0
Meridianin derivatives as potent Dyrk1A inhibitors and neuroprotective agents
Bioorganic & Medicinal Chemistry Letters 2015.0
Discovery of novel 6-hydroxybenzothiazole urea derivatives as dual Dyrk1A/α-synuclein aggregation inhibitors with neuroprotective effects
European Journal of Medicinal Chemistry 2022.0
Selective Macrocyclic Inhibitors of DYRK1A/B
ACS Medicinal Chemistry Letters 2022.0
Structural Optimization and Pharmacological Evaluation of Inhibitors Targeting Dual-Specificity Tyrosine Phosphorylation-Regulated Kinases (DYRK) and CDC-like kinases (CLK) in Glioblastoma
Journal of Medicinal Chemistry 2017.0