First Contact: 7-Phenyl-2-Aminoquinolines, Potent and Selective Neuronal Nitric Oxide Synthase Inhibitors That Target an Isoform-Specific Aspartate

Journal of Medicinal Chemistry
2020.0

Abstract

Inhibition of neuronal nitric oxide synthase (nNOS), an enzyme implicated in neurodegenerative disorders, is an attractive strategy for treating or preventing these diseases. We previously developed several classes of 2-aminoquinoline-based nNOS inhibitors, but these compounds had drawbacks including off-target promiscuity, low activity against human nNOS, and only modest selectivity for nNOS over related enzymes. In this study, we synthesized new nNOS inhibitors based on 7-phenyl-2-aminoquinoline and assayed them against rat and human nNOS, human eNOS, and murine and (in some cases) human iNOS. Compounds with a meta-relationship between the aminoquinoline and a positively charged tail moiety were potent and had up to nearly 900-fold selectivity for human nNOS over human eNOS. X-ray crystallography indicates that the amino groups of some compounds occupy a water-filled pocket surrounding an nNOS-specific aspartate residue (absent in eNOS). This interaction was confirmed by mutagenesis studies, making 7-phenyl-2-aminoquinolines the first aminoquinolines to interact with this residue.

Knowledge Graph

Similar Paper

First Contact: 7-Phenyl-2-Aminoquinolines, Potent and Selective Neuronal Nitric Oxide Synthase Inhibitors That Target an Isoform-Specific Aspartate
Journal of Medicinal Chemistry 2020.0
Simplified 2-Aminoquinoline-Based Scaffold for Potent and Selective Neuronal Nitric Oxide Synthase Inhibition
Journal of Medicinal Chemistry 2014.0
N-Phenylamidines as Selective Inhibitors of Human Neuronal Nitric Oxide Synthase:  Structure−Activity Studies and Demonstration of in Vivo Activity
Journal of Medicinal Chemistry 1998.0
Potent and Selective Human Neuronal Nitric Oxide Synthase Inhibition by Optimization of the 2-Aminopyridine-Based Scaffold with a Pyridine Linker
Journal of Medicinal Chemistry 2016.0
1,2-Dihydro-4-quinazolinamines:  Potent, Highly Selective Inhibitors of Inducible Nitric Oxide Synthase Which Show Antiinflammatory Activity in Vivo
Journal of Medicinal Chemistry 2003.0
Dihydroquinolines with amine-containing side chains as potent n-NOS inhibitors
Bioorganic & Medicinal Chemistry Letters 2003.0
1,2,3,4-Tetrahydroquinoline-Based Selective Human Neuronal Nitric Oxide Synthase (nNOS) Inhibitors: Lead Optimization Studies Resulting in the Identification ofN-(1-(2-(Methylamino)ethyl)-1,2,3,4-tetrahydroquinolin-6-yl)thiophene-2-carboximidamide as a Preclinical Development Candidate
Journal of Medicinal Chemistry 2012.0
Dihydroquinolines as Novel n-NOS Inhibitors
Bioorganic & Medicinal Chemistry Letters 2002.0
Synthesis, Biological Evaluation, and Docking Studies of N-Substituted Acetamidines as Selective Inhibitors of Inducible Nitric Oxide Synthase
Journal of Medicinal Chemistry 2009.0
Selective Acetamidine-Based Nitric Oxide Synthase Inhibitors: Synthesis, Docking, and Biological Studies
ACS Medicinal Chemistry Letters 2015.0