Exploiting the Tolerant Region I of the Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI) Binding Pocket: Discovery of Potent Diarylpyrimidine-Typed HIV-1 NNRTIs against Wild-Type and E138K Mutant Virus with Significantly Improved Water Solubility and Favorable Safety Profiles

Journal of Medicinal Chemistry
2019.0

Abstract

Diarylpyrimidine derivatives (DAPYs) exhibit robust anti-HIV-1 potency, although they have been compromised by E138K variant and severe side-effects and been suffering from poor water solubility. In the present work, hydrophilic morpholine or methylsulfonyl and sulfamide-substituted piperazine/piperidines were introduced into the right wing of DAPYs targeting the solvent-exposed tolerant region I. The anti-HIV-1 activities of 11c (EC50(WT) = 0.0035 μM, EC50(E138K) = 0.0075 μM) were the same as and 2-fold better than that of the lead etravirine against the wild-type and E138K mutant HIV-1, respectively, with a relative low cytotoxicity (CC50 ≥ 173 μM). Further test showed a significant improvement in the water solubility of 11c. Besides, 11c displayed no significant inhibition on main cytochrome P450 enzymes and exhibited no acute/subacute toxicities at doses of 2000 mg·kg-1/50 mg·kg-1 in mice. Taken together, we consider that 11c is a promising lead for further structural optimization.

Knowledge Graph

Similar Paper

Exploiting the Tolerant Region I of the Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI) Binding Pocket: Discovery of Potent Diarylpyrimidine-Typed HIV-1 NNRTIs against Wild-Type and E138K Mutant Virus with Significantly Improved Water Solubility and Favorable Safety Profiles
Journal of Medicinal Chemistry 2019.0
Targeting dual tolerant regions of binding pocket: Discovery of novel morpholine-substituted diarylpyrimidines as potent HIV-1 NNRTIs with significantly improved water solubility
European Journal of Medicinal Chemistry 2020.0
Structural optimization of pyridine-type DAPY derivatives to exploit the tolerant regions of the NNRTI binding pocket
European Journal of Medicinal Chemistry 2016.0
Identification of Dihydrofuro[3,4-d]pyrimidine Derivatives as Novel HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors with Promising Antiviral Activities and Desirable Physicochemical Properties
Journal of Medicinal Chemistry 2019.0
Exploiting the tolerant region I of the non-nucleoside reverse transcriptase inhibitor (NNRTI) binding pocket. Part 2: Discovery of diarylpyrimidine derivatives as potent HIV-1 NNRTIs with high Fsp3 values and favorable drug-like properties
European Journal of Medicinal Chemistry 2021.0
Further Exploring Solvent-Exposed Tolerant Regions of Allosteric Binding Pocket for Novel HIV-1 NNRTIs Discovery
ACS Medicinal Chemistry Letters 2018.0
Design, synthesis, and evaluation of “dual-site”-binding diarylpyrimidines targeting both NNIBP and the NNRTI adjacent site of the HIV-1 reverse transcriptase
European Journal of Medicinal Chemistry 2021.0
Exploiting the hydrophobic channel of the NNIBP: Discovery of novel diarylpyrimidines as HIV-1 NNRTIs against wild-type and K103N mutant viruses
Bioorganic & Medicinal Chemistry 2021.0
Improving Druggability of Novel Diarylpyrimidine NNRTIs by a Fragment-Based Replacement Strategy: From Biphenyl-DAPYs to Heteroaromatic-Biphenyl-DAPYs
Journal of Medicinal Chemistry 2021.0
Design of the naphthyl-diarylpyrimidines as potent non-nucleoside reverse transcriptase inhibitors (NNRTIs) via structure-based extension into the entrance channel
European Journal of Medicinal Chemistry 2021.0