Targeting dual tolerant regions of binding pocket: Discovery of novel morpholine-substituted diarylpyrimidines as potent HIV-1 NNRTIs with significantly improved water solubility

European Journal of Medicinal Chemistry
2020.0

Abstract

To address the intractable issues of drug resistance and poor solubility, a novel series of morpholine-substituted diarylpyrimidines targeting the tolerant region I and tolerant region II of NNIBP were rationally designed by utilizing the available crystallography studies. The biological evaluation results showed that four most promising compounds (14e1, 14g1, 14g2 and 14j2) displayed excellent potency against WT HIV-1 strain with EC values ranging from 58 to 87 nM, being far more potent than NVP and comparable to ETV. Besides, some derivatives exhibited moderate activity in inhibiting the mutant HIV-1 strains. More encouragingly, 14d2 (RF = 0.4) possessed higher antiresistance profile than ETV (RF = 6.3) and K-5a2 (RF = 3.0) toward the double mutant strain F227L + V106A. The HIV-1 RT inhibition assay confirmed their binding target. The molecular docking studies were conducted and discussed in detail to rationalize the preliminary SARs. Further test indicated that morpholine could indeed promote the improvement of water solubility. Additionally, the in silico prediction of physicochemical properties and CYP enzymatic inhibitory ability were investigated to evaluate their drug-like features.

Knowledge Graph

Similar Paper

Targeting dual tolerant regions of binding pocket: Discovery of novel morpholine-substituted diarylpyrimidines as potent HIV-1 NNRTIs with significantly improved water solubility
European Journal of Medicinal Chemistry 2020.0
Exploiting the Tolerant Region I of the Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI) Binding Pocket: Discovery of Potent Diarylpyrimidine-Typed HIV-1 NNRTIs against Wild-Type and E138K Mutant Virus with Significantly Improved Water Solubility and Favorable Safety Profiles
Journal of Medicinal Chemistry 2019.0
Further Exploring Solvent-Exposed Tolerant Regions of Allosteric Binding Pocket for Novel HIV-1 NNRTIs Discovery
ACS Medicinal Chemistry Letters 2018.0
Structural optimization of pyridine-type DAPY derivatives to exploit the tolerant regions of the NNRTI binding pocket
European Journal of Medicinal Chemistry 2016.0
Discovery of Novel Diarylpyrimidine Derivatives as Potent HIV-1 NNRTIs Targeting the “NNRTI Adjacent” Binding Site
ACS Medicinal Chemistry Letters 2018.0
Design, synthesis, and evaluation of “dual-site”-binding diarylpyrimidines targeting both NNIBP and the NNRTI adjacent site of the HIV-1 reverse transcriptase
European Journal of Medicinal Chemistry 2021.0
Exploiting the hydrophobic channel of the NNIBP: Discovery of novel diarylpyrimidines as HIV-1 NNRTIs against wild-type and K103N mutant viruses
Bioorganic & Medicinal Chemistry 2021.0
Identification of Dihydrofuro[3,4-d]pyrimidine Derivatives as Novel HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors with Promising Antiviral Activities and Desirable Physicochemical Properties
Journal of Medicinal Chemistry 2019.0
Exploiting the tolerant region I of the non-nucleoside reverse transcriptase inhibitor (NNRTI) binding pocket. Part 2: Discovery of diarylpyrimidine derivatives as potent HIV-1 NNRTIs with high Fsp3 values and favorable drug-like properties
European Journal of Medicinal Chemistry 2021.0
Design, synthesis and anti-HIV evaluation of novel diarylpyridine derivatives targeting the entrance channel of NNRTI binding pocket
European Journal of Medicinal Chemistry 2016.0