A simple and one-pot approach for the synthesis of highly functionalized novel (E)-2-benzylideno-(Z)-carbazolylideno cyanoacetamide derivatives from different 2-(2',3',4',9'-tetrahydro-carbazol-1'-ylidene)-propanedinitriles and aryl/heteroaryl carbaldehydes via vinylogous aldol reaction. The structures of the molecules were designated by FT-IR, 1H NMR, 13C NMR studies, elemental and X-ray crystallographic analysis. The synthesized pure products have been screened for in vitro antibiofilm inhibitory activity towards antibiotic-resistant pathogenic organisms. All the synthesized compounds showed biofilm inhibition. Promisingly, the moieties 3a, 3d and 3h showed higher antibiofilm activity at biofilm inhibitory concentration (BIC) (200 μg/mL) against bacterial pathogens. Among the three moieties, 3a showed high prospective against E. coli biofilm with minimal and maximal BIC percentage of 32% (10 μg/mL) and 89% (100 μg/mL) and chosen lowest BIC for further evaluation. Also, the 3a generate ROS two fold at 1 h treatment in E. coli biofilm. The 3a exhibited no toxic effect on cell viability upto 75 μg/mL in HEK293 cell lines. The results of the present study reveal that among (E)-2-benzylideno-(Z)-carbazolylideno cyanoacetamides, (E)-2-benzylideno-6-methyl-2,3,4,9-tetrahydro-1H-carbazol-(Z)-α-carbamino-α-cyano-1-ylidene (3a) could be exploited as an excellent antibiofilm agent against carbapenem-resistant E. coli bacteria strains.