Exploring Basic Tail Modifications of Coumarin-Based Dual Acetylcholinesterase-Monoamine Oxidase B Inhibitors: Identification of Water-Soluble, Brain-Permeant Neuroprotective Multitarget Agents

Journal of Medicinal Chemistry
2016.0

Abstract

Aiming at modulating two key enzymatic targets for Alzheimer's disease (AD), i.e., acetylcholinesterase (AChE) and monoamine oxidase B (MAO B), a series of multitarget ligands was properly designed by linking the 3,4-dimethylcoumarin scaffold to 1,3- and 1,4-substituted piperidine moieties, thus modulating the basicity to improve the hydrophilic/lipophilic balance. After in vitro enzymatic inhibition assays, multipotent inhibitors showing potencies in the nanomolar and in the low micromolar range for hMAO B and eeAChE, respectively, were prioritized and evaluated in human SH-SY5Y cell-based models for their cytotoxicity and neuroprotective effect against oxidative toxins (H2O2, rotenone, and oligomycin-A). The present study led to the identification of a promising multitarget hit compound (5b) exhibiting high hMAO B inhibitory activity (IC50 = 30 nM) and good MAO B/A selectivity (selectivity index, SI = 94) along with a micromolar eeAChE inhibition (IC50 = 1.03 μM). Moreover, 5b behaves as a water-soluble, brain-permeant neuroprotective agent against oxidative insults without interacting with P-gp efflux system.

Knowledge Graph

Similar Paper

Exploring Basic Tail Modifications of Coumarin-Based Dual Acetylcholinesterase-Monoamine Oxidase B Inhibitors: Identification of Water-Soluble, Brain-Permeant Neuroprotective Multitarget Agents
Journal of Medicinal Chemistry 2016.0
Structure-Based Design and Optimization of Multitarget-Directed 2H-Chromen-2-one Derivatives as Potent Inhibitors of Monoamine Oxidase B and Cholinesterases
Journal of Medicinal Chemistry 2015.0
Synthesis and evaluation of 7-substituted coumarin derivatives as multimodal monoamine oxidase-B and cholinesterase inhibitors for the treatment of Alzheimer's disease
European Journal of Medicinal Chemistry 2017.0
Multi-target tacrine-coumarin hybrids: Cholinesterase and monoamine oxidase B inhibition properties against Alzheimer's disease
European Journal of Medicinal Chemistry 2015.0
Probing Fluorinated Motifs onto Dual AChE-MAO B Inhibitors: Rational Design, Synthesis, Biological Evaluation, and Early-ADME Studies
Journal of Medicinal Chemistry 2022.0
Design, synthesis and biological evaluation of novel donepezil–coumarin hybrids as multi-target agents for the treatment of Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2016.0
N-Propargylpiperidines with naphthalene-2-carboxamide or naphthalene-2-sulfonamide moieties: Potential multifunctional anti-Alzheimer’s agents
Bioorganic & Medicinal Chemistry 2017.0
Design, synthesis and biological evaluation of novel coumarin- N -benzyl pyridinium hybrids as multi-target agents for the treatment of Alzheimer's disease
European Journal of Medicinal Chemistry 2017.0
Multi-target-directed ligands for Alzheimer's disease: Discovery of chromone-based monoamine oxidase/cholinesterase inhibitors
European Journal of Medicinal Chemistry 2018.0
Multitarget drug design strategy against Alzheimer’s disease: Homoisoflavonoid Mannich base derivatives serve as acetylcholinesterase and monoamine oxidase B dual inhibitors with multifunctional properties
Bioorganic & Medicinal Chemistry 2017.0