Antibacterial activity of indolyl-quinolinium derivatives and study their mode of action

Bioorganic & Medicinal Chemistry
2019.0

Abstract

Filamenting temperature-sensitive mutant Z (FtsZ) is recognized as a promising target for new antibiotics development because of its high conservatism and pivotal role in the bacteria cell division. The aromatic heterocyclic scaffold of indole is known showing merit medical functions in antiviral and antimicrobial. In the present study, a series of 1-methylquinolinium derivatives, which were integrated with an indole fragment at its 2-position and a variety of amino groups (cyclic or linear, mono- or di-amine) at the 4-position were synthesized and their antibacterial activities were evaluated. The results of antibacterial study show that the representative compounds can effectively inhibit the growth of testing strains including MRSA and VRE, with MIC values of 1-4 μg/mL by bactericidal mode. The mode of action assays revealed that c2 can effectively disrupt the rate of GTP hydrolysis and dynamic polymerization of FtsZ, and thus inhibits bacterial cell division and then causes bacterial cell death. In addition, the result of resistance generation experiment reveals that c2 is not likely to induce resistance in S. aureus.

Knowledge Graph

Similar Paper

Antibacterial activity of indolyl-quinolinium derivatives and study their mode of action
Bioorganic & Medicinal Chemistry 2019.0
Antibacterial activity of N -methylbenzofuro[3,2- b ]quinoline and N -methylbenzoindolo[3,2- b ]-quinoline derivatives and study of their mode of action
European Journal of Medicinal Chemistry 2017.0
Modification of 5-methylphenanthridium from benzothiazoles to indoles as potent FtsZ inhibitors: Broadening the antibacterial spectrum toward vancomycin-resistant enterococci
European Journal of Medicinal Chemistry 2021.0
Design and synthesis of quinolinium-based derivatives targeting FtsZ for antibacterial evaluation and mechanistic study
European Journal of Medicinal Chemistry 2022.0
3-Phenyl substituted 6,7-dimethoxyisoquinoline derivatives as FtsZ-targeting antibacterial agents
Bioorganic & Medicinal Chemistry 2012.0
Design, synthesis and evaluation of novel 9-arylalkyl-10-methylacridinium derivatives as highly potent FtsZ-targeting antibacterial agents
European Journal of Medicinal Chemistry 2021.0
Design, synthesis and antibacterial evaluation of 2,4-disubstituted-6-thiophenyl-pyrimidines
European Journal of Medicinal Chemistry 2019.0
Antibacterial activity of quinoxalines, quinazolines, and 1,5-naphthyridines
Bioorganic & Medicinal Chemistry Letters 2013.0
Antibacterial activity of substituted 5-methylbenzo[c]phenanthridinium derivatives
Bioorganic & Medicinal Chemistry Letters 2012.0
Novel 5-methyl-2-phenylphenanthridium derivatives as FtsZ-targeting antibacterial agents from structural simplification of natural product sanguinarine
Bioorganic & Medicinal Chemistry Letters 2018.0