Design, synthesis and biological evaluation of vinyl selenone derivatives as novel microtubule polymerization inhibitors

European Journal of Medicinal Chemistry
2020.0

Abstract

A series of novel vinyl selenone derivatives were designed, synthesized and evaluated as the tubulin polymerization inhibitors using a bioisosteric strategy. Among them, the representative compound 11k exhibited satisfactory anti-proliferative activities with IC values ranging from 0.287 to 0.621 μM against a panel of cancer cell lines. Importantly, 11k displayed more potent in vivo antitumor activity than the positive control paclitaxel, CA-4 and parent compound 4 without apparent toxicity, which was presumably ascribed to the antiangiogenic, antiproliferative and selective effects of selenium, along with the unique physiological activity of indole skeleton, which were both introduced into the structure of target compounds. Further mechanism study demonstrated that compound 11k showed potent activity in tubulin polymerization inhibition with IC value of 1.82 μM. Moreover, cellular mechanism studies disclosed that 11k blocked cell cycle arrest at G2/M phase, induced cell apoptosis and depolarized mitochondria of K562 cells. Meanwhile, 11k reduced the cell migration and had potent vascular disrupting activity. In summary, 11k could serve as a promising lead for the development of more efficient microtubule polymerization inhibitors for cancer therapy.

Knowledge Graph

Similar Paper

Design, synthesis and biological evaluation of vinyl selenone derivatives as novel microtubule polymerization inhibitors
European Journal of Medicinal Chemistry 2020.0
Synthesis, Evaluation, and Mechanism Study of Novel Indole-Chalcone Derivatives Exerting Effective Antitumor Activity Through Microtubule Destabilization in Vitro and in Vivo
Journal of Medicinal Chemistry 2016.0
Synthesis and biological evaluation of novel indole derivatives containing sulfonamide scaffold as potential tubulin inhibitor
MedChemComm 2016.0
Discovery of novel vinyl sulfone derivatives as anti-tumor agents with microtubule polymerization inhibitory and vascular disrupting activities
European Journal of Medicinal Chemistry 2018.0
Synthesis and Biological Evaluation of Selenium-Containing 4-Anilinoquinazoline Derivatives as Novel Antimitotic Agents
Journal of Medicinal Chemistry 2018.0
Synthesis, biological evaluation, and molecular docking studies of novel 1-benzene acyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as potential tubulin polymerization inhibitors
European Journal of Medicinal Chemistry 2015.0
Design, synthesis and biological evaluation of indole-based [1,2,4]triazolo[4,3-a] pyridine derivatives as novel microtubule polymerization inhibitors
European Journal of Medicinal Chemistry 2021.0
Design, Synthesis, and Evaluation of in Vitro and in Vivo Anticancer Activity of 4-Substituted Coumarins: A Novel Class of Potent Tubulin Polymerization Inhibitors
Journal of Medicinal Chemistry 2016.0
Toward Highly Potent Cancer Agents by Modulating the C-2 Group of the Arylthioindole Class of Tubulin Polymerization Inhibitors
Journal of Medicinal Chemistry 2013.0
Synthesis and biological evaluation of a novel class of isatin analogs as dual inhibitors of tubulin polymerization and Akt pathway
Bioorganic & Medicinal Chemistry 2011.0