N-2-(phenylamino) benzamide derivatives as novel anti-glioblastoma agents: Synthesis and biological evaluation

European Journal of Medicinal Chemistry
2021.0

Abstract

Glioblastoma is one of the most lethal brain tumors. The crucial chemotherapy is mainly alkylating agents with modest clinical success. Given this desperate need and inspired by the encouraging results of a phase II trial via concomitant Topo I inhibitor plus COX-2 inhibitor, we designed a series of N-2-(phenylamino) benzamide derivatives as novel anti-glioblastoma agents based on structure modification on 1,5-naphthyridine derivatives (Topo I inhibitors). Notably, the target compounds I-1 (33.61 ± 1.15 μM) and I-8 (45.01 ± 2.37 μM) were confirmed to inhibit COX-2, while a previous reported compound (1,5-naphthyridine derivative) resulted nearly inactive towards COX-2 (IC<sub>50</sub> > 150 μM). Besides, I-1 and I-8 exhibited higher anti-proliferation, anti-migration, anti-invasion effects than the parent compound 1,5-naphthyridine derivative, suggesting the success of modification based on the parent. Moreover, I-1 obviously repressed tumor growth in the C6 glioma orthotopic model (TGI = 66.7%) and U87MG xenograft model (TGI = 69.4%). Besides, I-1 downregulated PGE<sub>2</sub>, VEGF, MMP-9, and STAT3 activation, upregulated E-cadherin in the orthotopic model. More importantly, I-1 showed higher safety than temozolomide and different mechanism from temozolomide in the C6 glioma orthotopic model. All the evidence demonstrated that N-2-(phenylamino) benzamide derivatives as novel anti-glioblastoma agents could be promising for the glioma management.

Knowledge Graph

Similar Paper

N-2-(phenylamino) benzamide derivatives as novel anti-glioblastoma agents: Synthesis and biological evaluation
European Journal of Medicinal Chemistry 2021.0
Novel piperazine based benzamide derivatives as potential anti-glioblastoma agents inhibiting cell proliferation and cell cycle progression
European Journal of Medicinal Chemistry 2022.0
N-2-(Phenylamino) Benzamide Derivatives as Dual Inhibitors of COX-2 and Topo I Deter Gastrointestinal Cancers via Targeting Inflammation and Tumor Progression
Journal of Medicinal Chemistry 2022.0
Design, synthesis and biological evaluation of N-anthraniloyl tryptamine derivatives as pleiotropic molecules for the therapy of malignant glioma
European Journal of Medicinal Chemistry 2021.0
Antiglioma Activity of Aryl and Amido-Aryl Acetamidine Derivatives Targeting iNOS: Synthesis and Biological Evaluation
ACS Medicinal Chemistry Letters 2020.0
Non-alkylator anti-glioblastoma agents induced cell cycle G2/M arrest and apoptosis: Design, in silico physicochemical and SAR studies of 2-aminoquinoline-3-carboxamides
Bioorganic &amp; Medicinal Chemistry Letters 2021.0
Discovery of N-{3-[(ethanimidoylamino)methyl]benzyl}-l-prolinamide dihydrochloride: A new potent and selective inhibitor of the inducible nitric oxide synthase as a promising agent for the therapy of malignant glioma
European Journal of Medicinal Chemistry 2018.0
Discovery of novel N-benzylbenzamide derivatives as tubulin polymerization inhibitors with potent antitumor activities
European Journal of Medicinal Chemistry 2021.0
Discovery of mitochondria-targeting berberine derivatives as the inhibitors of proliferation, invasion and migration against rat C6 and human U87 glioma cells
MedChemComm 2014.0
New nimesulide derivatives with amide/sulfonamide moieties: Selective COX-2 inhibition and antitumor effects
European Journal of Medicinal Chemistry 2021.0