Design, synthesis and biological evaluation of N-anthraniloyl tryptamine derivatives as pleiotropic molecules for the therapy of malignant glioma

European Journal of Medicinal Chemistry
2021.0

Abstract

COX-2 and STAT3 are two key culprits in the glioma microenvironment. Herein, to inhibit COX-2 and block STAT3 signaling, we disclosed 27 N-anthraniloyl tryptamine compounds based on the combination of melatonin derivatives and N-substituted anthranilic acid derivatives. Among them, NP16 showed the best antiproliferative activity and moderate COX-2 inhibition. Of note, NP16 decreased the level of p-JAK2 and p-STAT3, and blocked the nuclear translocation of STAT3 in GBM cell lines. Moreover, NP16 downregulated the MMP-9 expression of BV2 cells in a co-culture system of BV2 and C6 glioma cells, abrogated the proliferative/invasive/migratory abilities of GBM cells, induced apoptosis by ROS and the Bcl-2-regulated apoptotic pathway, and induced obvious G<sub>2</sub>/M arrest in glioma cells in vitro. Furthermore, NP16 displayed favorable pharmacokinetic profiles covering long half-life (11.43 ± 0.43 h) and high blood-brain barrier permeability. Finally, NP16 effectively inhibited tumor growth, promoted the survival rate, increased the expression of E-cadherin and reduced overproduction of PGE<sub>2</sub>, MMP-9, VEGF-A and the level of p-STAT3 in tumor tissue, and improved the anxiety-like behavior in C6 glioma model. All these evidences demonstrated N-anthraniloyl tryptamine derivatives as multifunctional anti-glioma agents with high potency could drain the swamp to beat glioma.

Knowledge Graph

Similar Paper

Design, synthesis and biological evaluation of N-anthraniloyl tryptamine derivatives as pleiotropic molecules for the therapy of malignant glioma
European Journal of Medicinal Chemistry 2021.0
N-2-(phenylamino) benzamide derivatives as novel anti-glioblastoma agents: Synthesis and biological evaluation
European Journal of Medicinal Chemistry 2021.0
Design, synthesis and bioactivity study of N-salicyloyl tryptamine derivatives as multifunctional agents for the treatment of neuroinflammation
European Journal of Medicinal Chemistry 2020.0
Antiglioma Activity of Aryl and Amido-Aryl Acetamidine Derivatives Targeting iNOS: Synthesis and Biological Evaluation
ACS Medicinal Chemistry Letters 2020.0
Synthesis and biological evaluation of celastrol derivatives as potential anti-glioma agents by activating RIP1/RIP3/MLKL pathway to induce necroptosis
European Journal of Medicinal Chemistry 2022.0
Hirsutinolide Series Inhibit Stat3 Activity, Alter GCN1, MAP1B, Hsp105, G6PD, Vimentin, TrxR1, and Importin α-2 Expression, and Induce Antitumor Effects against Human Glioma
Journal of Medicinal Chemistry 2015.0
Structure-activity relationship study of Pseudellone C as anti-glioma agents by targeting TNF/TNFR signaling pathway
European Journal of Medicinal Chemistry 2024.0
Non-alkylator anti-glioblastoma agents induced cell cycle G2/M arrest and apoptosis: Design, in silico physicochemical and SAR studies of 2-aminoquinoline-3-carboxamides
Bioorganic &amp; Medicinal Chemistry Letters 2021.0
Lead Optimization of 2-Phenylindolylglyoxylyldipeptide Murine Double Minute (MDM)2/Translocator Protein (TSPO) Dual Inhibitors for the Treatment of Gliomas
Journal of Medicinal Chemistry 2016.0
Discovery of N-{3-[(ethanimidoylamino)methyl]benzyl}-l-prolinamide dihydrochloride: A new potent and selective inhibitor of the inducible nitric oxide synthase as a promising agent for the therapy of malignant glioma
European Journal of Medicinal Chemistry 2018.0