The 5-HT<sub>1A</sub> receptors are an important biological target in the treatment of CNS diseases. Recently, their importance in the context of non-CNS disease entities has also been postulated. In the light of these reports, we designed a new group of urea derivatives of N-aryl-N'-aryl-/(thio)ureido-/sulfamoylamino-derivatives of alkyl/alkylcarbamoyl piperazines as 5-HT<sub>1A</sub>R ligands, focusing on increasing receptor selectivity. We made structural modifications in three areas of the molecule. In the course of our research, we obtained a ligand with reduced basicity (6f), which, despite the loss of the protonable nitrogen atom, did not lose its affinity for the 5-HT<sub>1A</sub>R (K<sub>i</sub> = 35 nM) with a simultaneous increase in selectivity. In particular, a decrease in affinity for D<sub>2</sub>R (K<sub>i</sub> = 1940 nM) was observed, which was analyzed using molecular modeling methods, including FMO and molecular dynamics. Basic ADME-Tox parameters were characterized for 6f, confirming its potential applicability in pharmacotherapy.