Discovery of a NADPH oxidase inhibitor, (E)-3-cyclohexyl-5-(4-((2-hydroxyethyl)(methyl)amino)benzylidene)-1-methyl-2-thioxoimidazolidin-4-oneone, as a novel therapeutic for Parkinson's disease

European Journal of Medicinal Chemistry
2022.0

Abstract

Several lines of evidence indicated that generation of NADPH oxidase (Nox)-mediated reactive oxygen species are associated with neuronal inflammation, leading to Parkinson's disease (PD). Novel benzylidene-1-methyl-2-thioxoimidazolidin-one derivatives as Nox inhibitors were designed and synthesized in order to increase blood-brain barrier (BBB) permeability to target Nox in brain cells. In lucigenin chemiluminescence assay, eight compounds showed excellent inhibition activity against NADPH oxidases and parallel artificial membrane permeability assay (PAMPA) identified compound 11 with high passive permeability. To validate the effect of compound 11 on neuronal inflammation, we tested the regulatory activity of compound 11 in lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines in BV-2 microglial cells and LPS-mediated microglial migration. Treatment of BV2 cells with compound 11 resulted in suppressed production of pro-inflammatory cytokines and migration activity of BV2 cells in response to LPS. To evaluate the therapeutic efficacy of compound 11 in PD animal model, compound 11 was applied to MPTP-induced PD mouse model. Oral administration of compound 11 (30 mg/kg/daily, 4 weeks) into the mice resulted in suppression of dopaminergic neuronal death in substantia nigra (SN) and in striatum as well as inhibition of microglial migration into SN. These results implicate compound 11 as a novel therapeutic agent for the treatment of PD.

Knowledge Graph

Similar Paper

Discovery of a NADPH oxidase inhibitor, (E)-3-cyclohexyl-5-(4-((2-hydroxyethyl)(methyl)amino)benzylidene)-1-methyl-2-thioxoimidazolidin-4-oneone, as a novel therapeutic for Parkinson's disease
European Journal of Medicinal Chemistry 2022.0
Optimization of N-Phenylpropenoyl-<scp>l</scp>-amino Acids as Potent and Selective Inducible Nitric Oxide Synthase Inhibitors for Parkinson’s Disease
Journal of Medicinal Chemistry 2021.0
In vitro and in vivo neuroprotective effect of novel mPGES-1 inhibitor in animal model of Parkinson’s disease
Bioorganic &amp; Medicinal Chemistry Letters 2022.0
Neuroprotective effects of benzyloxy substituted small molecule monoamine oxidase B inhibitors in Parkinson’s disease
Bioorganic &amp; Medicinal Chemistry 2016.0
Sinomenine, a natural dextrorotatory morphinan analog, is anti-inflammatory and neuroprotective through inhibition of microglial NADPH oxidase
Journal of Neuroinflammation 2007.0
Discovery of Vinyl Sulfones as a Novel Class of Neuroprotective Agents toward Parkinson’s Disease Therapy
Journal of Medicinal Chemistry 2014.0
New 6-Aminoquinoxaline Derivatives with Neuroprotective Effect on Dopaminergic Neurons in Cellular and Animal Parkinson Disease Models
Journal of Medicinal Chemistry 2016.0
Synthesis and biological evaluation of clovamide analogues as potent anti-neuroinflammatory agents in vitro and in vivo
European Journal of Medicinal Chemistry 2018.0
A new therapeutic approach in Parkinson’s disease: Some novel quinazoline derivatives as dual selective phosphodiesterase 1 inhibitors and anti-inflammatory agents
Bioorganic &amp; Medicinal Chemistry 2009.0
Neuroprotective effects of a brain permeant 6-aminoquinoxaline derivative in cell culture conditions that model the loss of dopaminergic neurons in Parkinson disease
European Journal of Medicinal Chemistry 2015.0