Neuroprotective effects of a brain permeant 6-aminoquinoxaline derivative in cell culture conditions that model the loss of dopaminergic neurons in Parkinson disease

European Journal of Medicinal Chemistry
2015.0

Abstract

Parkinson disease is a neurodegenerative disorder of aging, characterized by disabling motor symptoms resulting from the loss of midbrain dopaminergic neurons and the decrease of dopamine in the striatum. Current therapies are directed at treating the symptoms but there is presently no cure for the disease. In order to discover neuroprotective compounds with a therapeutical potential, our research team has established original and highly regioselective methods for the synthesis of 2,3-disubstituted 6-aminoquinoxalines. To evaluate the neuroprotective activity of these molecules, we used midbrain cultures and various experimental conditions that promote dopaminergic cell loss. Among a series of 11 molecules, only compound MPAQ (2-methyl-3-phenyl-6-aminoquinoxaline) afforded substantial protection in a paradigm where dopaminergic neurons die spontaneously and progressively as they mature. Prediction of blood-brain barrier permeation by Quantitative Structure-Activity Relationship studies (QSARs) suggested that MPAQ was able to reach the brain parenchyma with sufficient efficacy. HPLC-MS/MS quantification in brain homogenates and MALDI-TOF mass spectrometry imaging on brain tissue sections performed in MPAQ-treated mice allowed us to confirm this prediction and to demonstrate, by MALDI-TOF mass spectrometry imaging, that MPAQ was localized in areas containing vulnerable neurons and/or their terminals. Of interest, MPAQ also rescued dopaminergic neurons, which (i) acquired dependency on the trophic peptide GDNF for their survival or (ii) underwent oxidative stress-mediated insults mediated by catalytically active iron. In summary, MPAQ possesses an interesting pharmacological profile as it penetrates the brain parenchyma and counteracts mechanisms possibly contributive to dopaminergic cell death in Parkinson disease.

Knowledge Graph

Similar Paper

Neuroprotective effects of a brain permeant 6-aminoquinoxaline derivative in cell culture conditions that model the loss of dopaminergic neurons in Parkinson disease
European Journal of Medicinal Chemistry 2015.0
New 6-Aminoquinoxaline Derivatives with Neuroprotective Effect on Dopaminergic Neurons in Cellular and Animal Parkinson Disease Models
Journal of Medicinal Chemistry 2016.0
Neuroprotective effects of benzyloxy substituted small molecule monoamine oxidase B inhibitors in Parkinson’s disease
Bioorganic & Medicinal Chemistry 2016.0
In vitro and in vivo neuroprotective effect of novel mPGES-1 inhibitor in animal model of Parkinson’s disease
Bioorganic & Medicinal Chemistry Letters 2022.0
Discovery of a NADPH oxidase inhibitor, (E)-3-cyclohexyl-5-(4-((2-hydroxyethyl)(methyl)amino)benzylidene)-1-methyl-2-thioxoimidazolidin-4-oneone, as a novel therapeutic for Parkinson's disease
European Journal of Medicinal Chemistry 2022.0
Synthesis of a natural quinoline alkaloid isolated from the deep-sea-derived fungus and its potential as a therapeutic for Parkinson’s disease
Journal of Asian Natural Products Research 2023.0
Synthesis of natural product-like polyprenylated phenols and quinones: Evaluation of their neuroprotective activities
Bioorganic & Medicinal Chemistry 2020.0
Neuroprotective effects of 2-heptyl-3-hydroxy-4-quinolone in HT22 mouse hippocampal neuronal cells
Bioorganic & Medicinal Chemistry Letters 2021.0
Optimization of N-Phenylpropenoyl-<scp>l</scp>-amino Acids as Potent and Selective Inducible Nitric Oxide Synthase Inhibitors for Parkinson’s Disease
Journal of Medicinal Chemistry 2021.0
Structural Modifications of Neuroprotective Anti-Parkinsonian (−)-N6-(2-(4-(Biphenyl-4-yl)piperazin-1-yl)-ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine (D-264): An Effort toward the Improvement of in Vivo Efficacy of the Parent Molecule
Journal of Medicinal Chemistry 2014.0